首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Autoimmune destruction of cells in the pancreas leads to type I, or insulin dependent diabetes mellitus (IDDM), through the loss of endogenous insulin production capacity. This paper describes an attempt to generate artificial cells using the fibroblast cell line BHK21. Stable transfectants expressing the human preproinsulin (PPI) gene were isolated and characterised. The resulting clone selected for further analysis (BHK-PPI-C16) was capable of secreting 0.12 pmol proinsulin/hr/105 cells and maintained a steady cellular proinsulin content of 0.36 ± 0.04 pmol l–1. There was no processing of the proinsulin to mature insulin. The cells were unresponsive to glucose but there was increased proinsulin secretion in the presence of agents that stimulated formation of intracellular cAMP. Transfection of cDNAs for the key elements of the glucose sensing apparatus (GLUT2 and glucokinase) led to a subphysiological stimulation of secretion when glucokinase was transfected alone while there was a complete loss of insulin secretion when both components were overexpressed. The deleterious effect on proinsulin secretion observed upon co-expression of the glucose sensing genes may have implications for applications requiring multigene expression in BHK21 cells.  相似文献   

4.
5.
6.
Adult rat heart muscle cells obtained by perfusion of the heart with collagenase have been used to characterize the insulin receptors by equilibrium binding and kinetic measurements. Binding of 125I-labelled insulin to heart cells exhibited a high degree of specificity; it was dependent on pH and temperature, binding at steady increased with decreasing temperatures. About 70% of the radioactivity bound at equilibrium at 25°C could be dissociated by addition of an excess of unlabelled insulin. 54 and 40% of 125I-labelled insulin was degraded by isolated heart cells after 2 h at 37°C and 4 h at 25°C, respectively. This degrading activity was effectively inhibited by high concentration of albumin.Equilibrium binding studies were conducted at 25°C using insulin concentrations ranging from 2.5 · 10?11 mol/l to 10?6 mol/l. Scatchard analysis of the binding data resulted in a curvilinear plot (concave upward), which was further analyzed using the average affinity profile. The empty site affinity constant was calculated to be 9.5 · 107 l/mol with a total receptor concentration of 3.4 · 106 sites per cell.The presence of site-site interactions of the negative cooperative type among the insulin receptors has been confirmed by kinetic experiments. The rate of dilution induced dissociation was enhanced in the presence of native insulin (5 · 10?9 mol/l), both, under conditions of low and high fractional saturation of receptors.  相似文献   

7.
8.
9.
These studies assessed the effects of 3,4-dihydroxybenzalacetone (ZN-1) and 1-(3,4-dihydroxyphenyl)-2-propanol (ZN-2) on MCF-7 cell proliferation. The compounds blocked [3H]estradiol binding to nuclear type II sites, but did not compete for [3H]estradiol binding to recombinant ERalpha or ERbeta. ZN-1 and ZN-2 inhibited the proliferation of ERalpha and ERbeta positive (MCF-7) and negative (MCF-10A) breast cells, further ruling out direct binding to ER in the mechanism of action of these compounds. Pre-loading type II sites with ZN-1 or ZN-2 reduced [3H]estradiol exchange, strongly suggesting the drugs were binding covalently. ZN-1 treatment resulted in complete occupancy of type II sites and sustained (9 days) inhibition of MCF-7 cell proliferation following its removal from the tissue culture medium. This cell growth inhibition was not due to non-specific toxicity, as the numbers of viable, attached cells per dish (determined by trypan blue dye exclusion) remained constant throughout this 9-day period and eventually reversed by day 19. ZN-2 effects on cell proliferation reversed more rapidly following discontinuation of treatment, a response consistent with the inability of the compound to totally block type II binding. Both ZN-1 and ZN-2 blocked estradiol stimulation of c-Myc and cyclin D1 gene expression in MCF-7 cells, two events that are clearly coupled to cell cycle progression. We suspect this may occur through ZN-1 or ZN-2 modification of nucleosome function and/or chromatin remodeling since nuclear type II sites are localized to a complex of histones H3 and H4 (Shoulars et. al, J Steroid Biochem. Mol. Biol. 96: 19-30, 2005).  相似文献   

10.
An ethanolic extract of Artemisia dracunculus L. (PMI 5011) has been observed to decrease glucose and insulin levels in animal models, but the cellular mechanisms by which insulin action is enhanced in vivo are not precisely known. In this study, we evaluated the effects of PMI 5011 to modulate gene expression and cellular signaling through the insulin receptor in skeletal muscle of KK-Ay mice. Eighteen male KK-Ay mice were randomized to a diet (w/w) mixed with PMI 5011 (1%) or diet alone for 8 weeks. Food intake, adiposity, glucose and insulin were assessed over the study, and at study completion, vastus lateralis muscle was obtained to assess insulin signaling parameters and gene expression. Animals randomized to PMI 5011 were shown to have enhanced insulin sensitivity and increased insulin receptor signaling, i.e., IRS-associated PI-3 kinase activity, Akt-1 activity and Akt phosphorylation, in skeletal muscle when compared to control animals (P<.01, P<.01 and P<.001, respectively). Gene expression for insulin signaling proteins, i.e., IRS-1, PI-3 kinase and Glut-4, was not increased, although a relative increase in protein abundance was noted with PMI 5011 treatment. Gene expression for specific ubiquitin proteins and specific 20S proteasome activity, in addition to skeletal muscle phosphatase activity, i.e., PTP1B activity, was significantly decreased in mice randomized to PMI 5011 relative to control. Thus, the data demonstrate that PMI 5011 increases insulin sensitivity and enhances insulin receptor signaling in an animal model of insulin resistance. PMI 5011 may modulate skeletal muscle protein degradation and phosphatase activity as a possible mode of action.  相似文献   

11.
This study addresses an important clinical issue by identifying potential candidates of vascular endothelial growth factor (VEGF) signalling through the Flk-1 receptor that trigger cardioprotective signals under ischaemic stress. Isolated working mouse hearts of both wild-type (WT) and Flk-1(+/-) were subjected to global ischaemia (I) for 30 min. followed by 2 hrs of reperfusion (R). Flk-1(+/-) myocardium displayed almost 50% reduction in Flk-1 mRNA as examined by quantitative real-time RT-PCR at the baseline level. Flk-1(+/-) mouse hearts displayed reduction in left ventricular functional recovery throughout reperfusion (dp/dt 605 versus 884), after 2 hrs (P<0.05). Coronary (1.9 versus 2.4 ml) and aortic flow (AF) (0.16 versus 1.2 ml) were reduced in Flk-1(+/-) after 2 hrs of reperfusion. In addition, increased infarct size (38.4%versus 28.41%, P<0.05) and apoptotic cardiomyocytes (495 versus 213) were observed in Flk-1(+/-) knockout (KO) mice. We also examined whether ischaemic preconditioning (PC), a novel method to induce cardioprotection against ischaemia reperfusion injury, through stimulating the VEGF signalling pathway might function in Flk-1(+/-) mice. We found that knocking down Flk-1 resulted in significant reduction in the cardioprotective effect by PC compared to WT. Affymetrix gene chip analysis demonstrated down-regulation of important genes after IR and preconditioning followed by ischaemia reperfusion in Flk-1(+/-) mice compared to WT. To get insight into the underlying molecular pathways involved in ischaemic PC, we determined the distinct and overlapping biological processes using Ingenuity pathway analysis tool. Independent evidence at the mRNA level supporting the Affymetrix results were validated using real-time RT-PCR for selected down-regulated genes, which are thought to play important roles in cardioprotection after ischaemic insult. In summary, our data indicated for the first time that ischaemic PC modifies genomic responses in heterozygous VEGFR-2/Flk-1 KO mice and abolishes its cardioprotective effect on ischaemic myocardium.  相似文献   

12.
13.
14.
Caveolins are implicated in endocytosis, cholesterol trafficking and signal transduction. A cDNA fragment corresponding to caveolin-1 (CAV1) was identified in a mRNA profiling expression study in bovine granulosa cells (GC) following human chorionic gonadotropin (hCG)-induced ovulation. Thus, we have characterized CAV1 cDNA and studied its spatio-temporal expression pattern in bovine ovarian follicles. The full-length bovine alphaCAV1 cDNA was cloned and encodes a putative 22 kDa protein. Expression of alphaCAV1 was studied in bovine GC obtained from follicles at different developmental stages: small follicles (SF: 2-4 mm), dominant follicles (DF), ovulatory follicles (OF: 24 hr post-hCG), and corpus luteum (CL). Semiquantitative RT-PCR analysis showed a 6.5-fold increase in alphaCAV1 mRNA in GC of OF versus DF (P < 0.0001), whereas CAV2 mRNA was increased by only twofold (P < 0.0007). Temporal expression of alphaCAV1 mRNA from OF recovered at 0, 6, 12, 18, and 24 hr after hCG injection showed an 8.5-fold increase of alphaCAV1 mRNA after 24 hr compared to 0 hr (P < 0.0018) whereas no significant variation was detected for CAV2. Immunoblot demonstrated an initial increase in alphaCAV1 protein level 12 hr post-hCG, reaching a maximum at 24 hr. Immunohistochemical localization of CAV1 was observed in GC of OF isolated 18 and 24 hr after hCG injection, whereas no signal was detected in GC of DF and SF. The induction of alphaCAV1 in GC of OF suggests that alphaCAV1 likely contributes to control the increase in membrane signaling that occurs at the time of ovulation and luteinization.  相似文献   

15.
为研究NAC转录因子对大豆﹝Glycine max ( Linn.) Merr.〕异黄酮合成的影响,根据大豆基因组序列设计引物,从豆荚中克隆获得GmNAC73-like基因,并对该基因序列进行生物信息学分析。结果显示:GmNAC73-like基因包含1个长度981 bp的完整开放阅读框,编码326个氨基酸。 GmNAC73-like蛋白的理论相对分子质量37000,理论等电点pI 6.4,为亲水性蛋白,无信号肽,并被定位在细胞核上,包含核定位信号“PKRRK”。同源性比对结果显示:GmNAC73-like蛋白与野大豆( Glycine soja Sieb. et Zucc.)、蒺藜苜蓿( Medicago truncatula Gaertn.)、可可( Theobroma cacao Linn.)、葡萄( Vitis vinifera Linn.)及拟南芥﹝Arabidopsis thaliana ( Linn.) Heynh.〕的NAC蛋白具有较高的相似性,相似度分别为93%、69%、73%、75%和58%。在NJ系统树上,GmNAC73-like蛋白与野大豆的GsNAC8蛋白和木豆﹝Cajanus cajan ( Linn.) Millsp.〕的CcNAC8蛋白聚在一起,显示出较近的亲缘关系。半定量RT-PCR分析结果显示:在大豆的三叶期、开花期和结荚期,GmNAC73-like基因在根中均不表达,在茎和叶中可不同程度表达且茎中表达量较高;而在开花期或结荚期,该基因在花或豆荚中也可表达,且豆荚中表达量较高。酵母单杂交实验结果显示:GmNAC73-like可与异黄酮生物合成关键酶基因GmIFS2启动子中的CGTG基序结合;在大豆转基因发状根系中过表达GmNAC73-like基因后,除查尔酮异构酶基因的表达量无变化外,其他异黄酮生物合成相关基因的表达量均不同程度提高,其中,肉桂酸-4-羟化酶基因和查尔酮合酶基因的表达量明显提高。此外,在GmNAC73-like基因过表达的大豆转基因发状根系中总异黄酮含量显著降低。综合分析结果表明:GmNAC73-like可能通过与MYB转录因子的互作调控GmIFS2基因的表达,并在大豆异黄酮的生物合成过程中起负调控作用。  相似文献   

16.
17.
18.
The -112A>C polymorphism (rs10011540) of the gene for uncoupling protein 1 (UCP1) has been associated with type 2 diabetes mellitus in Japanese individuals. The aim of the present study was to investigate the effects of this polymorphism, as well as the well-known -3826A>G polymorphism (rs1800592), on clinical characteristics of type 2 diabetes. We determined the genotypes of the two polymorphisms in 93 Japanese patients with type 2 diabetes. Intramyocellular lipid content and hepatic lipid content (HLC) were measured by magnetic resonance spectroscopy. No significant differences in age, sex, BMI, or HbA1c level were detected between type 2 diabetic patients with the -112C allele and those without it. However, homeostasis model assessment for insulin resistance (p=0.0089) and HLC (p=0.012) was significantly greater in patients with the -112C allele. We did not detect an association of the -3826A>G polymorphism (rs1800592) of UCP1 gene with any measured parameters. These results suggest that insulin resistance caused by the -112C allele influences the susceptibility to type 2 diabetes.  相似文献   

19.
We investigated influence of endogenous and exogenous melatonin on genetic and serologic aspects of secretory function of pancreas in rats. Thirty adult Wistar rats were divided into six groups. To achieve variable levels of endogenous melatonin, 10-day long-term exposure to light and darkness was implemented. Exogenous melatonin was administered orally (10 mg/kg of body weight). Blood glucose and serum levels of insulin, glucagon, and melatonin were measured by ELISA. Gene expression levels of insulin and glucagon were determined using the real time PCR. Results showed increase of blood glucose and decrease in serum levels of insulin after administration of melatonin without any significant difference in serum levels of glucagon. Gene expression levels of insulin in melatonin group were significantly lower than control group, while their glucagon was more. We concluded that oral administration of melatonin leads to increasing blood glucose, due to inhibition of insulin and stimulation of glucagon synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号