首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper concerns with ion homeostatic reactions in view of stimulus-secretion coupling of the beta-cell, including Ca2+ fluxes of the endoplasmatic reticulum (ER). A steady state of cytosolic sodium and potassium ion concentrations ([Na+]c and [K+]c, respectively), and of the membrane potential (Delta c phi) can be attained only, if the flux through the electrogenic Na-K pump (JNaK) is balanced electrically, and if JNaK is rather high (about 25% of total ATP consumption at 10 mM glucose). Metabolically caused changes of cellular pH are unlikely, because, on the one hand, CO2 can rapidly leave the cell through cellular membranes, and because ATP cycling cannot produce nor consume protons. A slight decrease of pHc during cellular activity is caused mainly by an increased Ca-H exchange flux through the plasma membrane Ca2+ pump (J PMCA), which might be overcome, however, by H+ transport into secretory granules. The present simulations show that the conductance of ATP-sensitive K+ channels (K ATP) is highly susceptible to changes of [Mg2+]c. As a physical link between the Ca2+ filling state of the ER and the initiation of a depolarising, Ca2+ release-activated current (I CRAN), a metabolite (inositol 1,4,-diphosphate (IP2)) of the inositol 1,4,5-triphosphate (IP3) cycle is introduced. Sufficient ATP for insulin secretion is made available during glucose activation by [IP2] inhibition of a parallel [ATP]c consuming flux through protein biosynthesis (J Pbs). This leads to fast oscillations with a triphasic patterns of [Ca2+]c oscillations. Slow oscillations are initiated by including a Ca2+ leak current through highly uncoupled SERCA3 pumps. Both types of oscillations may superimpose yielding compound bursting and mixed oscillations of [Ca2+]c.  相似文献   

2.
Extracellular ATP has vasodilatory and inotropic effects in the heart. We have demonstrated that extracellular ATP, in a concentration-dependent manner (10 nM-0.1 mM), increased [Ca2+]i in suspensions of isolated fura-2-loaded rat cardiac ventricular myocytes (maximum 96 +/- 10% increase over basal levels, SEM, n = 12, P less than 0.01). The increase in [Ca2+]i was often biphasic, with an initial fast phase (less than 1 s) of low amplitude, followed by a slower phase of higher amplitude. A second application of ATP had little effect, and ATP abolished the effect of subsequent electrical stimulations, even through the cells were still able to respond with an increase in [Ca2+]i to KCl-induced depolarization or stimulation by caffeine. Pretreatment of cells with nifedipine, verapamil, caffeine, ryanodine, or 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride attenuated the effect of extracellular ATP on [Ca2+]i, and binding of extracellular free calcium by excess EGTA completely abolished the effects of extracellular ATP and electrical stimulation. Extracellular ATP increased bisoxonol fluorescence in ventricular myocytes, indicating depolarization of the sarcolemma. Pretreatment of the myocytes with tetrodotoxin (50 microM), or replacement of NaCl in the incubation buffer with the impermeant cation N-methyl-D-glucamine, suppressed the extracellular ATP effect on [Ca2+]i. ADP and AMP had smaller effects on [Ca2+]i than ATP; adenosine had no effect. ATP analogues showed the following rank order of potency in increasing [Ca2+]i or bisoxonol fluorescence: ATP greater than or equal to 2-methylthioATP much greater than adenosine 5'-O-[3-thio]triphosphate greater than adenosine 5'-[alpha, beta-methylene]triphosphate approximately adenosine 5'-[beta, gamma-methylene]triphosphate approximately adenosine 5'-[beta, gamma-imino]triphosphate greater than adenosine. These data are consistent with the presence of purinoceptors (P2Y subtype) on the sarcolemma of cardiac ventricular myocytes of the rat, which upon activation lead to depolarization and activation of cation channels of the sarcolemma and flux of extracellular Ca2+ into the cells. This may result in further flux of Ca2+ into the cytosol from intracellular stores. The effects of extracellular ATP on [Ca2+]i in rat cardiac ventricular myocytes may, in part, explain the direct inotropic effects of extracellular ATP on the mammalian heart.  相似文献   

3.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

4.
Stimulation of hepatocytes with vasopressin evokes increases in cytosolic free Ca2+ ([Ca2+]c) that are relayed into the mitochondria, where the resulting mitochondrial Ca2+ ([Ca2+]m) increase regulates intramitochondrial Ca2+-sensitive targets. To understand how mitochondria integrate the [Ca2+]c signals into a final metabolic response, we stimulated hepatocytes with high vasopressin doses that generate a sustained increase in [Ca2+]c. This elicited a synchronous, single spike of [Ca2+]m and consequent NAD(P)H formation, which could be related to changes in the activity state of pyruvate dehydrogenase (PDH) measured in parallel. The vasopressin-induced [Ca2+]m spike evoked a transient increase in NAD(P)H that persisted longer than the [Ca2+]m increase. In contrast, PDH activity increased biphasically, with an initial rapid phase accompanying the rise in [Ca2+]m, followed by a sustained secondary activation phase associated with a decline in cellular ATP. The decline of NAD(P)H in the face of elevated PDH activity occurred as a result of respiratory chain activation, which was also manifest in a calcium-dependent increase in the membrane potential and pH gradient components of the proton motive force (PMF). This is the first direct demonstration that Ca2+-mobilizing hormones increase the PMF in intact cells. Thus, Ca2+ plays an important role in signal transduction from cytosol to mitochondria, with a single [Ca2+]m spike evoking a complex series of changes to activate mitochondrial oxidative metabolism.  相似文献   

5.
Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.  相似文献   

6.
The precise regulation of the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) is important for protein processing and signal transduction. In the pancreatic beta-cell, dysregulation of [Ca2+]er may cause impaired insulin secretion. The Ca2+-sensitive photoprotein aequorin mutated to lower its Ca2+ affinity was stably expressed in the endoplasmic reticulum (ER) of rat insulinoma INS-1 cells. The steady state [Ca2+]er was 267 +/- 9 microM. Both the Ca2+-ATPase inhibitor cyclopiazonic acid and 4-chloro-m-cresol, an activator of ryanodine receptors, caused an almost complete emptying of ER Ca2+. The inositol 1,4,5-trisphosphate generating agonists, carbachol, and ATP, reduced [Ca2+]er by 20-25%. Insulin secretagogues that raise cytosolic [Ca2+] by membrane depolarization increased [Ca2+]er in the potency order K+ > glucose > leucine, paralleling their actions in the cytosolic compartment. Glucose, which augmented [Ca2+]er by about 25%, potentiated the Ca2+-mobilizing effect of carbachol, explaining the corresponding observation in cytosolic [Ca2+]. The filling of ER Ca2+ by glucose is not directly mediated by ATP production as shown by the continuous monitoring of cytosolic ATP in luciferase expressing cells. Both glucose and K+ increase [Ca2+]er, but only the former generated whereas the latter consumed ATP. Nonetheless, drastic lowering of cellular ATP with a mitochondrial uncoupler resulted in a marked decrease in [Ca2+]er, emphasizing the requirement for mitochondrially derived ATP above a critical threshold concentration. Using alpha-toxin permeabilized cells in the presence of ATP, glucose 6-phosphate did not change [Ca2+]er, invalidating the hypothesis that glucose acts through this metabolite. Therefore, insulin secretagogues that primarily stimulate Ca2+ influx, elevate [Ca2+]er to ensure beta-cell homeostasis.  相似文献   

7.
G L Lukács  A Kapus  A Fonyó 《FEBS letters》1988,229(1):219-223
The entrapment of the Ca2+-sensitive fluorescence indicators fura-2 or quin2 in the matrix space of isolated heart mitochondria renders possible the direct monitoring of the matrix free Ca2+ [( Ca2+]m) [(1987) Biochem J. 248, 609-613]. In this paper the correlation between the [Ca2+]m and the in situ activity of oxoglutarate dehydrogenase (OGDH) in fura-2-loaded mitochondria is shown. At the initial value of [Ca2+]m, 64 nM, which corresponded to 0.36 nmol/mg mitochondrial Ca content, the OGDH activity was 12% of the maximal. Half-maximal and maximal activation were attained at 0.8 and 1.6 microM [Ca2+]m, respectively. The results indicate that an increase of the mitochondrial Ca content in the physiological range enhances the OGDH activity by means of elevation of [Ca2+]m.  相似文献   

8.
The action of exogenous ATP on cytoplasmic free Ca2+ ([Ca2+]i) was studied in insulin secreting cells using fura-2. Stimulation of clonal pancreatic beta-cells (HIT) with ATP (range 2-20 microM) evoked a sustained elevation in [Ca2+]i. ATP selectively promoted Ca2+ influx and not Ca2+ mobilization since (1) the effect required external Ca1+ and (2) was observed in cells in which internal stores were depleted with ionomycin (3) the rate of Mn2+ influx, measured as the quenching of the fura-2 signal, was accelerated by ATP. The action of ATP was unaffected by the voltage-sensitive Ca2+ channel blockers nifedipine and verapamil as well as by a depolarizing concentration of K+. The effect on [Ca2+]i was highly specific for ATP since AMP, ADP, adenosine 5'-[gamma-thio]triphosphate, adenosine 5'-[beta, gamma-methylene]triphosphate, GTP and adenosine were ineffective. In normal pancreatic islet cells, both exogenous ATP (range 0.2-2 microM) and ADP induced a transient Ca2+ elevation that did not require external Ca2+. The nucleotide specificity of the effect on [Ca2+]i suggests that ATP activates P2 gamma purinergic receptors in normal beta-cells. Thus, ATP evokes a Ca2+ signal in clonal HIT cells and normal islet cells by different transducing systems involving distinct purinoreceptors. A novel mechanism for increasing [Ca2+]i by extracellular ATP is reported in HIT cells, since the nucleotide specificity and the selective activation of Ca2+ influx without mobilization of internal Ca2+ stores cannot be explained by mechanisms already described in other cell systems.  相似文献   

9.
T Kanno  Y Habara 《Cell calcium》1991,12(8):523-531
The spatial dynamics of cytosolic Ca2+ concentration, [Ca2+]c, in guinea pig adrenal chromaffin cells was monitored by a digital image analysing technique using Fura-2. When a freshly isolated cluster of cells was stimulated with lower concentrations of carbachol (CCh; 0.3-1 microM), the [Ca2+]c began to increase in the region beneath the plasma membrane facing the extracellular environment. The [Ca2+]c increase depended on the presence of extracellular Ca2+ ([Ca2+]o). CCh at a higher concentration (100 microM), however, caused [Ca2+]c increase even in the absence of [Ca2+]o. These results are compatible with the view that the receptor activation with a physiological concentration of secretagogue accelerates Ca2+ entry, and that stimulation with a higher concentration of the secretagogue induces small transient Ca2+ release from intracellular stores and predominant continuous Ca2+ entry.  相似文献   

10.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

11.
The contractile sensitivity of smooth muscle to changes in myoplasmic [Ca2+] is dependent on the form of stimulation. Both myosin phosphorylation and force are less sensitive to increases in [Ca2+]i derived from Ca2+ entry through L-type Ca2+ channels than to increases in [Ca2+] induced by agents which release internal Ca2+ stores. We hypothesized that activation of receptor-operated channels should produce a [Ca2+]i sensitivity similar to that induced by opening L channels. Aequorin-estimated myoplasmic [Ca2+] and myosin light chain phosphorylation were measured in swine carotid media tissues stimulated with ATP, an activator of the only known receptor-operated cation channel in smooth muscle. ATP, via activation of a P2x purinergic receptor, induced large, transient increases in [Ca2+]i, yet only small transient elevations in phosphorylation or force. Rapid desensitization to ATP was partially, but not completely, caused by hydrolysis of ATP into adenosine since 1) alpha-beta-methylene ATP (a poorly hydrolyzable analog of ATP) produced larger, yet still transient increases in [Ca2+]i, phosphorylation, and force; 2) BW A1433U, a P1 (adenosine) receptor antagonist, enhanced ATP-induced contractions; and 3) ATP, but not alpha-beta-methylene ATP increased bath [adenosine]. The [Ca2+]i sensitivity of phosphorylation during P2x receptor activation was similar to that observed with KCl-depolarization-induced opening of L channels, supporting the hypothesis that transplasmalemmal Ca2+ influx produces less phosphorylation and force than mobilization of intracellular Ca2+ stores. Cumulative additions of higher alpha-beta-methylene ATP concentrations induced repeated transient contractions, indicative of an unusual form of receptor desensitization which could be explained if the affinity of the P2x receptor for ATP, but not the receptor number were rapidly reduced.  相似文献   

12.
Characterization of responses of isolated rat hepatocytes to ATP and ADP   总被引:35,自引:0,他引:35  
In isolated rat hepatocytes, ATP and ADP (10(-6) M) rapidly mobilize intracellular Ca2+ and increase the concentration of free cytosolic Ca2+ ([Ca2+]i) within 1-2 s. The increase in [Ca2+]i is maximal (2.5- to 3-fold) by about 10 s and is dose-dependent, with ATP and ADP being half-maximally effective at 8 X 10(-7) and 3 X 10(-7) M, respectively. At submaximal concentrations, the rise in [Ca2+]i is transient due to hydrolysis of the agonist. The increase in [Ca2+]i in response to ATP or ADP can be potentiated by low concentrations of glucagon (10(-9) M). In addition, the [Ca2+]i rise can be antagonized in a time- and dose-dependent manner by the tumor promoter 4 beta-phorbol 12 beta-myristate 13 alpha-acetate. Adenosine, at concentrations as high as 10(-4) M, does not alter [Ca2+]i. AMP is ineffective at 10(-5) M, but at 10(-4) M it increases [Ca2+]i approximately 1.5-fold after a 30-s lag and at a slow rate. Conversely, high concentrations (10(-4) M) of adenosine and AMP increases cell cAMP about 2- to 3-fold. ATP and ADP, at concentrations (10(-6) M) which near-maximally increase [Ca2+]i, do not affect hepatocyte cAMP. ATP and ADP increase the cellular level of myoinositol 1,4,5-trisphosphate (IP3), the putative second messenger for Ca2+ mobilization. The increase in IP3 is dose-dependent and precedes or is coincident with the [Ca2+]i rise. There is an approximate 20% increase in IP3 with concentrations of ATP or ADP which near-maximally induce other physiological responses. It is concluded that submicromolar concentrations of ATP and ADP mobilize intracellular Ca2+ and activate phosphorylase in hepatocytes due to generation of IP3. These effects may involve P2-purinergic receptors. In contrast adenosine and AMP interact with P1 (A2)-purinergic receptors to increase cAMP.  相似文献   

13.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

14.
In human pancreatic islets an increase in the glucose concentration from 3 to 20 mM raised the free cytoplasmic Ca2+ concentration [( Ca2+]i), an effect being reversible upon withdrawal of the sugar. Depolarization with a high concentration of K+ or the sulphonylurea tolbutamide also raised [Ca2+]i. Addition of extracellular ATP produced a transient rapid rise in [Ca2+]i. Oscillations in [Ca2+]i were observed in the presence of 10 mM glucose. Insulinoma cells responded to glucose and tolbutamide with increases in [Ca2+]i, whereas the sulphonamide diazoxide caused a decrease in [Ca2+]i. These findings confirm previous results obtained in rodent beta-cells.  相似文献   

15.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

16.
Potassium-mediated stimulation of hepatic glycogenolysis   总被引:1,自引:0,他引:1  
Increased extracellular potassium concentrations ([K+]o) stimulated transient increases in glucose release and 45Ca2+ washout in the perfused rat liver. Stimulated glucose release had a K0.5 of about 26 mM for [K+]o, was not desensitized by successive infusion intervals of increased [K+]o, was not affected by altering the direction of perfusion, was absolutely dependent on the presence of [Ca2+]o, and was blocked by 2 mM cobalt or 10 microM verapamil. The increase in 45Ca2+ washout resulting from increased [K+]o also was blocked by 2 mM cobalt or 10 microM verapamil. Inhibitors of vascular tone (nitroprusside, atriopeptin II), arachidonic acid metabolism (indomethacin, nordihydroguaiaretic acid), and alpha- or beta-adrenergic or muscarinic nerve stimulation/secretion (phentolamine, propranolol, atropine) were unable to inhibit the [K+]o-stimulated glucose release. ATP, ADP, and AMP concentrations in tissue freeze-clamped 2 min after the onset of infusion of 50 mM K+ were not significantly different from control tissue. Glucose release from freshly isolated suspensions or primary cultured monolayers of hepatocytes or from liver slices, all of which responded to glucagon or phenylephrine, did not respond to increased [K+]o. The results indicate that glycogenolysis stimulated by depolarizing gradients of K+ is dependent on an intact perfused vasculature and may be mediated by potential-sensitive Ca2+ channels present in the vascular endothelium of the liver.  相似文献   

17.
Studies were conducted in C57BL/6N Crj male mice and in cultured hepatocytes to clarify the relationship between galactosamine (GaIN) induced apoptosis and [Ca2+]i kinetics. Chlorpromazine (CPZ), a Ca(2+)-calmodulin antagonist, and verapamil (VR), a Ca(2+)-channel blocker each inhibited GaIN-induced DNA fragmentation and the appearance of apoptotic bodies. The kinetics of calcium uptake were evaluated using a calcium analyzer with the acetoxymethyl ester of fura-PE3 (fura-PE3/AM, 2.5 microM) as the calcium reporter. An increase in [Ca2+]i was detected in the cultured hepatocytes within 3 hours after treatment with 20 mM GaIN; this increase was inhibited by pretreatment with either 20 microM CPZ or 30 microM VR. Ca2+ imaging by confocal laser scanning microscopy showed that increase in [Ca2+]i after treatment with GaIN was initially localized around nuclei, while [Ca2+]i signals were later diffuse and observed throughout the cytoplasm. The activities of lactate dehydrogenase (LDH) and serum glutamate-pyruvate transaminase (sGPT), used as indicators of plasma membrane damage and leakage, however, were not reduced by pretreatment with CPZ or VR. From these findings, we infer that the DNA fragmentation in GaIN-induced hepatocyte apoptosis is associated with an elevation in the perinuclear concentration of Ca2+, but GaIN-induced necrotic cell death is triggered through pathway(s) that are insensitive to blockage of Ca2+ influx and therefore appear to occur independently of elevation in [Ca2+]i. These results help to clarify the role of calcium flux in hepatocyte apoptosis and necrosis induced by exposure to hepatotoxins in vivo and in vitro.  相似文献   

18.
Confluent AKR-2B fibroblasts rapidly disintegrate after serum deprivation.27 ATP or adenosine added immediately after serum removal afforded substantial protection against cell death even for a long period of 24 h. ED50 values were 14 and 110 microM for ATP and adenosine, respectively. In the presence of 5 microg/ml cycloheximide the protective effect of both substances was suppressed, indicating that protein synthesis is required. The protective effect of ATP was highly specific since among numerous tested derivatives only ATP-[gamma-S] exhibited a substantial protective effect.The ability of ATP and adenosine to modulate cell division was analyzed. Both substances did not exhibit any mitogenic effect. Adenosine completely blocked PDGF-BB induced cell division, whereas ATP had no effect. Unlike adenosine, ATP strongly stimulated Ca2+-release from intracellular stores. On the other hand, adenosine stimulated an increase in the intracellular concentration of cAMP from 0.4 - 1.5 microM, whereas ATP decreased the content below 0.1 microM. ATP stimulated the phosphorylation of MAP-kinase, RSK and p70S6-kinase; adenosine was inactive. After complexation of [Ca2+]i the protective effect of ATP was greatly lost while adenosine was still active. Surprisingly neither ATP nor adenosine caused an activation of PKC-isoforms. After incubation with pertussis toxin, the protection by ATP was reduced indicating an involvement of Gi-proteins in the signal transduction induced by ATP. Our results indicate that ATP as well as adenosine are potent inhibitors of cell death caused by serum deprivation and that this protective effect apparently occurs via distinct pathways. However, both pathways must converge at the point of caspase activation, since the stimulation of DEVDase- and VEIDase-activities, respectively, are suppressed by either ATP or adenosine.  相似文献   

19.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

20.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号