首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We showed expression of the tryptophan hydroxylase gene and of tryptophan hydroxylase protein immunoreactivity in mouse skin and skin cells. Extracts from skin and melanocyte samples acetylated serotonin to N-acetylserotonin and tryptamine to N-acetyltryptamine. A different enzyme from arylalkylamine N-acetyltransferase mediated this reaction, as this gene was defective in the C57BL6 mouse, coding predominantly for a protein without enzymatic activity. Serotonin (but not tryptamine) acetylation varied according to hair cycle phase and anatomic location. Serotonin was also metabolized to 5-hydroxytryptophol and 5-hydroxyindole acetic acid, probably through stepwise transformation catalyzed by monoamine oxidase, aldehyde dehydrogenase and aldehyde reductase. Activity of the melatonin-forming enzyme hydroxyindole-O-methyltransferase was notably below detectable levels in all samples of mouse corporal skin, although it was detectable at low levels in the ears and in Cloudman melanoma (derived from the DBA/2 J mouse strain). In conclusion, mouse skin has the molecular and biochemical apparatus necessary to produce and metabolize serotonin and N-acetylserotonin, and its activity is determined by topography, physiological status of the skin, cell type and mouse strain.  相似文献   

2.
The activities of N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) and the indole contents of the Harderian glands of male Syrian hamsters were studied throughout a 24-h period. NAT activity exhibited a sharp rise 1 h after lights on, decreasing to basal levels 1 h later. Neither a HIOMT activity nor a melatonin concentration rhythm was detected throughout the 24 h. The 5-hydroxytryptamine (serotonin) concentration was highest during the dark phase reaching a peak at 0300 h; with light onset serotonin levels exhibited a rapid short-term drop. The 5-hydroxytryptophol concentration was highest during the mid- to late photophase; the lowest values to this constituent were measured late in the dark phase and at 1 h after lights on. The 5-hydroxyindole acetic acid concentration of the Harderian glands was rather stable throughout the 24-h period but levels did show a short-lived drop 1 h after light onset. Only a few animals contained detectable amounts of N-acetyl-5-hydroxytryptamine (N-acetylserotonin) in their Harderian glands. In agreement with previous work on the Harderian glands of female Syrian hamsters, the present results in males suggest that light onset is associated with marked changes in Harderian indoleamine metabolism.  相似文献   

3.
Summary Monoamine oxidase (MAO) and alcohol dehydrogenase (AD) activities were studied histochemically in the Syrian hamster Harderian gland using tryptamine as substrate and Nitroblue Tetrazolium as the final electron acceptor. No dark: light-related changes were observed. Male type I secretory cells showed an intense MAO reaction. Female type I cells exhibited a moderate MAO activity. Both male and female glands showed a moderate/intense AD-positive reaction. Male type II cells were lacking MAO and AD activities. MAO activity found in the hamster Harderian glands corresponded mainly to MAO type A since treatment with chlorgyline (0.01, 0.1 and 0.5mm) totally inhibited it. The possible role of these two enzymes in Harderian gland indolalkylamine metabolism is discussed.  相似文献   

4.
Homogenates of retinal external segments of rat, rabbit, beef and hen and of rat Harderian gland were found to possess a considerable activity of guanidineacetate-N-methyltransferase (GAMT, E.C. 2.1.1.2), comparable with the enzyme activity in liver, pancreas and testis. Permanent UV-illumination of rats (from 1 day to 1 week) resulted in the decrease of GAMT activity in retina and especially in Harderian gland. Caffeine (10(-4) M) and papaverine (10(-7) M) activated GAMT in retina and rat Harderian gland, while cycloheximide, a protein synthesis inhibitor (0.5-2 mkg/ml), eliminated caffeine-stimulated GAMT activity. Histamine (0.3 mkg/ml) inhibited GAMT activity both in retina and Harderian gland. A decrease of GAMT activity in retina, liver and testis of rat and an increase of the enzyme activity in rat pancreas and Harderian gland were observed in the presence of Mg2+ (5 mM). Physiological importance of GAMT and creatine in mammalian retina and rat Harderian gland is discussed.  相似文献   

5.
The Harderian gland is considered as being an extrapineal source of melatonin. In most rodents, the Harderian gland contains two epithelial cell types (I and II). The aim of this study has been to define which cell type is involved in indoleamine synthesis. The presence and localization of serotonin (melatonin precursor) and tryptophan hydroxylase (the rate-limiting enzyme for serotonin synthesis) have been investigated by immunohistochemistry in male Wistar rats, Syrian hamsters and Djungarian hamsters. The results of the present study show that immunoreactivity for tryptophan hydroxylase and serotonin is confined to the type I cell, suggesting that this cell type is involved in indoleamine synthesis in the rodent Harderian gland.  相似文献   

6.
Sexual differences and the effects of orchidectomy were determined for porphyrin and melatonin concentrations and for the activities of the enzymes N-acetyltransferase and hydroxyindole-O-methyltransferase, which synthesize melatonin from serotonin, in the Harderian glands of the Syrian hamster. Porphyrin concentrations in intact males were about 1/400th those of intact females. Castration for 1 week increased male Harderian porphyrin concentrations 10-fold; by 3 weeks, castrated male porphyrin levels were 140 times those of control values. N-Acetyltransferase activity in intact male Harderian glands was about 4 times that of females. Castration led to a drop in N-acetyltransferase activity to female levels within 2 weeks. Hydroxyindole-O-methyltransferase activity was 7 times higher in females than in males and castration had no effect on male Harderian hydroxyindole-O-methyltransferase activity. Neither gender nor castration influenced Harderian melatonin concentrations. Soluble proteins in Harderian glands from male and female hamsters and from male hamsters castrated for 1 and 4 weeks were examined by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The gel profiles revealed several differences among the protein distribution in male and female gland lysates. Orchidectomy led to a female protein pattern within 4 weeks.  相似文献   

7.
Amine N-acetylation in the pineal gland is of special importance because it is the first step in the synthesis of melatonin from serotonin. In the present study the N-acetylation of arylamines and arylalkylamines by homogenates of rat and sheep pineal glands was investigated. The arylamines studied were p-phenetidine and aniline; the arylalkylamines studied were tryptamine, serotonin, 5-methoxytryptamine, 6-fluorotryptamine, and phenylethylamine. These amines were acetylated by pineal homogenates of both species, although marked interspecies differences in apparent Km and Vmax values were found. A series of observations in both species indicate that aromatic amine N-acetylation is catalyzed by two distinct enzymes; one preferentially acetylates arylamines and the other preferentially acetylates arylalkylamines. First, isoproterenol treatment of the rat increased arylalkylamine N-acetylation 100-fold without increasing arylamine N-acetylation. Second, cycloheximide treatment in sheep reduced arylalkylamine N-acetylation at night to one-tenth control values, without altering arylamine N-acetylation. Third, arylamine N-acetyltransferase and arylalkylamine N-acetyltransferase inactivated at different rates at 4 degrees C. Fourth, the two enzymes were resolved by size exclusion chromatography. These results clearly establish that the pineal gland contains an arylamine N-acetyltransferase and a second, independently regulated arylalkylamine N-acetyltransferase which appears to be primarily responsible for the physiological conversion of serotonin to melatonin via the intermediate N-acetylserotonin.  相似文献   

8.
Methods are described for the measurement of seven haem biosynthetic enzymes in Harderian gland tissue from male and female golden hamsters. Sex differences were found in five of the seven enzymes. In each case, female tissue exhibited higher activity than male tissue. These differences in enzyme activity are sufficient to account for the major sex difference in porphyrin content in the Harderian gland of this species.  相似文献   

9.
O Pulido  G M Brown  L J Grota 《Life sciences》1983,33(11):1081-1089
The synthesis of N-acetylserotonin (NAS) in the pineal gland is dependent upon the activity of the enzymes tryptophan-hydroxylase, 1-aromatic amino acid decarboxylase and N-acetyltransferase. Pineal N-acetyltransferase activity is regulated by the level of B-adrenergic activation. N-acetylserotonin (NAS) has also been identified in extra-pineal brain tissue. In order to investigate whether extra-pineal brain NAS levels are regulated by tryptophan hydroxylase and B-adrenergic activity, the effects of tryptophan hydroxylase inhibitors (parachlorophenylalanine and 6-fluoro-tryptophan) and adrenergic drugs (l-isoproterenol and propranolol) were examined. NAS was evaluated in the cerebellum of the rat using quantitative NAS-immunohistochemistry. A significant decrease in NAS-immunofluorescence was observed after tryptophan hydroxylase inhibition. Treatment with l-isoproterenol, a B-adrenergic agonist, resulted in a significant increase in NAS-immunofluorescence intensity. This effect was blocked by propranolol, a B-adrenergic blocking agent. These data indicate that the synthesis of NAS, in the cerebellum utilizes the established serotonin pathway and that NAS synthesis in the cerebellum is regulated by a B-adrenergic mechanism similar to that in the pineal gland.  相似文献   

10.
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.  相似文献   

11.
Tetrahymena pyriformis strain HSM was found to have monomine oxidase (MAO) and a catechol-3-methyl transferase-like (COMT) activity. As in mammalian tissues, the MAO activity is predominantly localized in the mitochondrial pellet and COMT in the cytosol. The COMT-like activity was present in amounts comparable to several mouse tissues and was inhibited by tropolone. MAO activity was much lower than in any of the mouse tissues tested, and its activity varied greatly from preparation to preparation. The substrate preference of Tetrahymena MAO was tryptamine greater than serotonin greater than dopamine, and activity increased with increasing pH from pH 6.5 to pH 7.8, as does that of mouse liver MAO. Teh Km of Tetrahymena MAO for tryptamine was approximately 4 micrometer, an order of magnitude lower than that of mouse liver MAO. Sensitivity of inhibition by MAO inhibitors was variable. In some preparations, no inhibition was observed. In others clear inhibition was obtained, harmine and clorgyline being among the most potent inhibitors.  相似文献   

12.
13.
A Chan  M Ebadi 《Life sciences》1981,28(6):697-703
The relationship between the concentration of CoASH and the activity of serotonin N-acetyltransferase (NAT) was studied in rat pineal glands in culture. A technique for microdetermination of CoASH was developed by utilizing acetyl CoA synthetase and partially purified rat liver NAT. Initially CoASH was acetylated with [1–3H] acetate using acetyl CoA synthetase. Subsequently, the labelled acetyl group was transferred from [1–3H] acetyl CoA to tryptamine forming [1–3H acetyl-tryptamine which was then extracted into chloroform and measured by scintillation spectrometry. A direct relationship appeared to exist between the concentrations of CoASH and [1–3H] acetyltryptamine. This method is sensitive and specific since it can detect as low as 10–15 pmoles of CoASH but not structurally related substances such as acetyl CoA, ADP, cysteamine, or D-pantothenic acid. After treating the rat pineal glands in culture with 10 μM norepinephrine for six hours, the concentration of CoASH was found to decrease significantly from 31.96 ± 0.68 to 24.44 ± 0.37 pmoles/gland, while the activity of NAT increased 68 fold. This inverse relationship indicates that CoASH does not play a direct role in NAT induction although it does protect darktime NAT activity in pineal homogenates against thermal inactivation. The sensitivity and the adaptability of this method can be utilized to measure CoASH in discrete regions of rat brain and in experimental conditions where the micromeasurement of CoASH may be required.  相似文献   

14.
1. Indole metabolism and porphyrin content of the Harderian glands of the male Syrian hamster were measured as functions of drug-induced hypothyroidism and exposure to cold conditions. 2. Harderian gland N-acetyltransferase (NAT) activity was reduced from control levels by hypothyroidism induced by methimazole; exposure to cold had no effect on NAT activity. 3. Immunoreactive melatonin in the Harderian glands was unaffected by the state of thyroid secretion. However, immunoreactive melatonin content declined after 180 and 270 min, at 4 degrees C, suggesting that Harderian gland melatonin may be involved in thermoregulation. 4. Porphyrin content of the Harderian glands was not affected by either thyroid secretion or cold.  相似文献   

15.
The Harderian gland is a poorly understood anterior ocular gland that occurs in most terrestrial vertebrates. Numerous extraorbital functions have been ascribed to the Harderian gland, principally based on its association with the nasolacrimal duct. Few studies have centered on archosaurs and the majority of those available focused solely on the Harderian gland of birds. Little is known about the lacrimal apparatus of the crocodilians. We examined the lacrimal apparatus of several specimens of Alligator mississippiensis anatomically, histologically, and histochemically and studied the embryogenesis of this system. The nasolacrimal duct possesses a distal secretory area, which is more convoluted than that of typical mammals or lepidosaurs. The alligator Harderian gland possesses a unique combination of characteristics found in lepidosaurs, birds, and mammals. Like that of both mammals and lepidosaurs, it is a large, tuboloacinar gland that appears to secrete both mucoprotein and lipids. However, the presence of blood vessels and immune cells is reminiscent of that of the avian Harderian gland. The immunogenesis of the alligator Harderian gland appears to be tied to the development of the vascular system. The presence of a distinct palpebral gland in the anterior aspect of the ventral eyelid is a feature unique to alligators. Based on position, this gland does not appear to be homologous to the anterior lacrimal gland of lepidosaurs. Lymphatic aggregations were also found in the palpebral gland. The presence of interstitial immune cells in the orbital glands of alligators suggests that the alligator lacrimal apparatus, like that of birds, may play a role in the head-associated lymphatic tissue system.  相似文献   

16.
The Harderian glands of rodents are large intraorbital exocrine glands with histologic organization that varies among mammalian species. Here we describe some ultrastructural and biochemical features of the Harderian gland in the Mexican volcano mouse Neotomodon alstoni alstoni, a species of restricted habitat. The Harderian glands from male and female adult mice were dissected, processed and embedded in Epon 812 for light and electron microscopy studies. Porphyrin and total lipids were biochemically determined. The macroscopic appearance of the Harderian gland is similar in the male and female. The gland is a bilobulate structure, situated in the orbit towards the posterior side of the eyeball, of whitish color and is surrounded by a connective tissue capsule. The male gland is slightly heavier (127 mg) than that of the female (113 mg). The Harderian gland shows a tubulo-alveolar organization and is composed exclusively of one type of secretory cells. No branched duct system within the gland was found. Adrenergic nerves endings and mast cell were observed in the interstices of the alveoli. Male and female glands produce similar levels of porphyrins. Triglyceride levels were significantly higher (P < 0.05) in the female compared to the male. Abundance of lipids could induce corneal lubrication of the Harderian gland which may confer a protective and adaptative function to the volcano mouse in its natural habitat during the dry and cold seasons.  相似文献   

17.
Dark-adapted retinas of mice (C57BL/6J) incubated in the dark in media containing 1 mM 3-isobutylmethylxanthine (IBMX) or 5 mM Co2+ accumulate cyclic AMP (cAMP). A portion of this pool is light sensitive, as light can prevent or reverse its accumulation. Similarly, tryptamine, serotonin, 5-methoxytryptamine, bufotenine, and 5-methoxydimethyltryptamine can block the accumulation of the light-sensitive pool of cAMP, whereas tryptophan, melatonin, N-acetylserotonin, 5-methoxytryptophol, and tetrahydro-beta-carbolines are inactive. The phenomenon is not seen with mutant mouse retinas (rd/rd), which lack most photoreceptors, but persists in abnormal retinas containing photoreceptors but with extensive neuronal depletion in the inner retina. Tryptamine also inhibits cAMP accumulation in either dark or light-adapted retinas exposed to forskolin alone but not in media containing high levels of forskolin plus 1 mM IBMX. There is some suggestion that serotonin 5-HT-2 antagonists can partially reverse the action of the tryptamines, but hitherto undescribed receptors may be involved. Current data suggest that photoreceptors are the target for the action of the tryptamines.  相似文献   

18.
Kang S  Kang K  Lee K  Back K 《Plant cell reports》2007,26(11):2009-2015
Serotonin is a well-known pineal hormone that in mammals plays a key role in mood. In plants, serotonin is implicated in several physiological roles such as flowering, morphogenesis, and adaptation to environmental changes. However, its biosynthetic enzyme in plants has not been characterized. Therefore, we measured the serotonin content and enzyme activity responsible for serotonin biosynthesis in rice seedlings. Tryptamine 5-hydroxylase (T5H), which converts tryptamine into serotonin, was found as a soluble enzyme that had maximal activity in the roots. The maximal activity of T5H was closely associated with the enriched synthesis of serotonin in roots. Tetrahydropterine-dependent T5H activity was inhibited by tyramine, tryptophan, 5-OH-tryptophan, and octopamine, but remained unaltered by dopamine in vitro. The tissues of rice seedlings grown in the presence of tryptamine exhibited a dose-dependent increase in serotonin in parallel with enhanced T5H enzyme activity. However, no significant increase in serotonin was observed in rice tissues grown in the presence of tryptophan, suggesting that tryptamine is a bottleneck intermediate substrate for serotonin synthesis.  相似文献   

19.
We investigated the effects of diazepam (DZP) and its three metabolites: nordiazepam (NZP), oxazepam (OZP), and temazepam (TZP) on pineal gland nocturnal melatonin secretion. We looked at the effects of benzodiazepines on pineal gland melatonin secretion both in vitro (using organ perifusion) and in vivo in male Wistar rats sacrificed in the middle of the dark phase. We also examined the effects of these benzodiazepines on in vivo melatonin secretion in the Harderian glands. Neither DZP (10-5-10-6 M) nor its metabolites (10-4-10-5 M) affected melatonin secretion by perifused rat pineal glands in vitro. In contrast, a 10-4 M suprapharmacological concentration of DZP increased melatonin secretion of perifused pineal glands by 70%. In vivo, a single acute subcutaneous administration of DZP (3 mg/kg body weight) significantly affected pineal melatonin synthesis and plasma melatonin levels, while administration of the metabolites under the same conditions did not. DZP reduced pineal melatonin content (-40%), N-acetyltransferase activity (-70%), and plasma melatonin levels (-40%), but had no affects on pineal hydroxyindole-O-methyltransferase activity. Neither DZP nor its metabolites affected Harderian gland melatonin content. Our results indicate that the in vivo inhibitory effect of DZP on melatonin synthesis is not due to the metabolism of DZP. The results also show that the control of melatonin production in the Harderian glands differs from that observed in the pineal gland.  相似文献   

20.
The Harderian gland of the gecko, Tarentola mauritanica, was studied at the histological, histochemical, and ultrastructural levels. It is a nonlobate compound acinar gland surrounded by a thin capsule of connective tissue. Numerous connective tissue-type mast cells, ultrastructurally similar to those described in other higher vertebrates, were identified in the interstitial tissue between the acini. Pyramidal or columnar-shaped secretory glandular cells were observed in the acini. In the glandular cells, two types of structures could be distinguished on the basis of their high or low electron density. Lipid droplets were found in the cytoplasm of the Harderian gland of both sexes. Histochemical tests showed that the Harderian gland of the gecko is a seromucous gland. The secretion is essentially merocrine, although an apocrine type of secretion is sometimes observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号