首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of myelin basic protein on the aggregation, lipid bilayer merging, intercommunication of aqueous compartments and leakage of small unilamellar vesicles of egg phosphatidylcholine containing different proportions of galactocerebroside and sulfatide were investigated. This was performed employing light scattering, absorbance changes and fluorescence assays (resonance energy transfer, Terbium/dipicolinic acid assay and carboxyfluorescein release). The apposition of membranes rapidly induced by myelin basic protein is enhanced by sulfatide but reduced by galactocerebroside compared to vesicles of egg phosphatidylcholine alone. On the other hand, the presence of either glycosphingolipid in the membrane interferes with the induction by myelin basic protein of lipid bilayer merging, subsequent fusion and changes of the membrane permeability. Our results support an important modulation by sulfatide and galactocerebroside on the interactions among membranes induced by myelin basic protein, depending on the relative proportions of the glycosphingolipids and phosphatidylcholine.  相似文献   

2.
The stability of various aggregates in the form of lipid bilayer vesicles was tested by three different methods before and after crossing different semi-permeable barriers. First, polymer membranes with pores significantly smaller than the average aggregate diameter were used as the skin barrier model; dynamic light scattering was employed to monitor vesicle size changes after barrier passage for several lipid mixtures with different bilayer elasticities. This revealed that vesicles must adapt their size and/or shape, dependent on bilayer stability and elasto-mechanics, to overcome an otherwise confining pore. For the mixed lipid aggregates with highly flexible bilayers (Transfersomes®), the change is transient and only involves vesicle shape and volume adaptation. The constancy of ultradeformable vesicle size before and after pores penetration proves this. This is remarkable in light of the very strong aggregate deformation during an enforced barrier passage. Simple phosphatidylcholine vesicles, with less flexible bilayers, lack such capability and stability. Conventional liposomes are therefore fractured during transport through a semi-permeable barrier; as reported by other researchers, liposomes are fragmented to the size of a narrow pore if sufficient pressure is applied across the barrier; otherwise, liposomes clog the pores. The precise outcome depends on trans-barrier flux and/or on relative vesicle vs. pore size. Lipid vesicles applied on the skin behave accordingly. Mixed lipid vesicles penetrate the skin if they are sufficiently deformable. If this is the case, they cross inter-cellular constrictions in the organ without significant composition or size modification. To prove this, we labelled vesicles with two different fluorescent markers and applied the suspension on intact murine skin without occlusion. The confocal laser scanning microscopy (CLSM) of the skin then revealed a practically indistinguishable distribution of both labels in the stratum corneum, corroborating the first assumption. To confirm the second postulate, we compared vesicle size in the starting suspension and in the blood after non-invasive transcutaneous aggregate delivery. Size exclusion chromatograms of sera from the mice that received ultradeformable vesicles on the skin were undistinguishable from the results measured with the original vesicle suspension. Taken together, the results support our previous postulate that ultradeformable vesicles penetrate the skin intact, that is, without permanent disintegration.  相似文献   

3.
The influence of membrane lipid environment on the activity of GPI-anchored enzymes was investigated with human placental alkaline phosphatase reconstituted by a detergent-dialysis technique in liposomes composed of palmitoyloleoylphosphatidylcholine, alone or in mixture with lipids enriched along with the protein within lipid rafts: cholesterol, sphingomyelin, and GM1 ganglioside. The highest V max was recorded for a phosphatidylcholine/10% GM1 mixture (143 +/- 5 nmol of substrate hydrolyzed per minute per microgram of protein), while the lowest for a phosphatidylcholine/30% cholesterol mixture and for raft-mimicking 1:1:1 phosphatidylcholine/sphingolipid/cholesterol liposomes (M:M:M) (57 +/- 3 and 52 +/- 3, respectively). No significant differences in K m were detected. The protein segregation, assessed using the chemical cross-linker bis(sulfosuccinimidyl)suberate, increased with the protein:lipid ratio, within the 1:1200-1:4800 protein:lipid molar ratio range, but did not affect enzyme activity. The activity decreased when the order of the lipid bilayers was increased, higher for those containing cholesterol, as judged by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Finally, the GPI-enzyme activity was affected by membrane curvature. This result was suggested by a strong inverse correlation (Pearson's correlation coefficient = 0.91; p < 0.0001) between activity and liposome diameter, measured by laser light scattering and ranging between 59 +/- 6 nm for a phosphatidylcholine/10% GM1 mixture (displaying the highest activity) and 188 +/- 25 nm for a phosphatidylcholine/30% cholesterol mixture and 185 +/- 23 nm for raft-mimicking liposomes (displaying the lowest activities). The activity-membrane curvature relationship was further confirmed by comparing the activity of proteoliposomes having different sizes but identical lipid compositions. These data open the possibility that the activity of GPI-anchored enzymes may be modulated by membrane microenvironment features, in particular by membrane curvature and cholesterol-enriched ordered microenvironments, such as those of lipid rafts.  相似文献   

4.
The presence of proteins in lipid bilayers always decreases the excimer formation rate of pyrene and pyrene lipid analogues in a way that is related to the protein-to-lipid ratio. Energy transfer measurements from intrinsic tryptophans to pyrene have shown (Engelke et al., 1994), that in microsomal membranes, the excimer formation rate of pyrene and pyrene fatty acids is heterogeneous within the membrane plane, because a lipid layer of reduced fluidity surrounds the microsomal proteins. This study investigates whether of not liposomes prepared from egg yolk phosphatidylcholine with incorporated gramicidin A give results comparable to those from microsomal membranes. The results indicate that the influence of proteins on the lipid bilayer cannot be described by one unique mechanism: Small proteins such as gramicidin A obviously reduce the excimer formation rate by occupying neighboring positions of the fluorescent probe and thus decrease the pyrene collision frequency homogeneously in the whole membrane plane, while larger proteins are surrounded by a lipid boundary layer of lower fluidity than the bulk lipid. The analysis of the time-resolved tryptophan fluorescence of gramicidin A incorporated liposomes reveals, that the tryptophan quenching by pyrene is stronger for tryptophans located closely below the phospholipid headgroup region because of the pyrene enrichment in this area of the lipid bilayer. Received: 29 December 1996/Revised: 15 May 1996  相似文献   

5.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40 degrees C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40 degrees C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

6.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/ phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/ phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40°C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40°C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

7.
The interaction of the nonionic surfactant dodecylmaltoside (DM) with phosphatidylcholine liposomes was investigated. Permeability alterations were detected as a change in 5(6)-carboxyfluorescein released from the interior of vesicles and bilayer solubilization as a decrease in the static light scattered by liposome suspensions. This surfactant showed higher capacity to saturate and solubilize PC liposomes and greater affinity with these structures than those reported for the octyl glucoside. At subsolubilizing level an initial maximum in the bilayer/water partitioning (K) followed by an abrupt decrease of this parameter occurred as the effective molar ratio of surfactant to phospholipid in bilayers (Re) rose. However, at solubilizing level a direct dependence was established between both parameters. A direct correlation took place in the initial interaction steps (Re up to 0.28) between the growth of vesicles, their fluidity, and Re. A similar direct dependence was established during solubilization (Re range from 0.9 to 1.7) between the decrease in both the surfactant-PC aggregate size, the light scattering of the system, and Re (composition of aggregates). The fact that the free DM concentration at subsolubilizing and solubilizing levels showed values lower than and similar to its critical micelle concentration indicates that permeability alterations and solubilization were determined, respectively, by the action of surfactant monomer and by the formation of mixed micelles.  相似文献   

8.
Steady-state measurements of pyrene fluorescence in the model bilayer membranes composed of phosphatidylcholine (PC) and its mixtures with cardiolipin (CL) have been performed to gain insight into the effect of lysozyme on molecular organization of lipid bilayer. Analysis of vibronic structure of the probe emission spectra revealed no changes in transverse distribution of pyrene monomers on varying CL contents or increasing the extent of lysozyme binding to liposomes. Excimer-to-monomer fluorescence intensity ratio has been found to reduce on lysozyme association with lipids. The magnitude of this effect increased with increasing CL content from 0 to 40 mol%. These results have been interpreted as indicating decrease in the membrane free volume on formation of both electrostatic and hydrophobic protein-lipid contacts.  相似文献   

9.
The interaction of lipoprotein lipase (LpL) and a nonhydrolyzable phosphatidylcholine, 1,2-ditetradecyl-rac-glycero-3-phosphocholine (C14-ether-PC), has been studied by several physical methods. Analysis of the circular dichroic spectrum of LpL gave the following fractional conformation: 35% alpha-helix, 30% beta-pleated sheet, and 45% remaining structure. No significant change in the circular dichroic spectrum of LpL was observed on addition of C14-ether-PC vesicles. The quenching of LpL fluorescence by acrylamide and iodide ion was decreased only slightly by addition of C14-ether-PC vesicles. Addition of LpL to sonicated C14-ether-PC vesicles containing entrapped carboxyfluorescein caused the release of less than 15% of the vesicle contents in 20 min, indicating that the enzyme did not disrupt the structure of the lipid. In contrast, greater than 80% of the vesicle contents were released with the addition of apolipoprotein A-I to an identical vesicle preparation. The temperature dependence of the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into C14-ether-PC vesicles was not significantly altered by the addition of LpL. When LpL is added to vesicles, the bilayer structure of the vesicles is not disrupted as observed by freeze-fracture electron microscopy. However, at low ionic strength (0.1-0.25 M NaCl) significant aggregation of intact vesicles is observed by light scattering and electron microscopy. Vesicle aggregation is prevented and reversed by 1 M NaCl and by heparin. These data demonstrate that LpL binds to the surface of a lipid interface, without dramatic changes in lipid bilayer or protein structure.  相似文献   

10.
The transfer of pyrene between 1-acid glycoprotein, acethylcholinesterase and sonicated liposomes was used to monitor glycoprotein-protein interaction on the lipid bilayer. When a density solution of glycoprotein or protein labeled with pyrene was mixed with unlabeled suspension of free-phospholipid liposomes, or suspensions containing the complexes of glycoprotein-lipid, protein-lipid, or glycoprotein-protein-lipid, pyrene excimer fluorescence increased with a half-time of approximately 30–50 msec. Since the increase in excimer fluorescence indicates an increase in the microscope concentrations of pyrene, the observed fluorescence change reflects pyrene transfer. The half-times for the increase in excimer fluorescence were determined in the presence of glycoprotein and protein in the liposomes. On the basis of the determined half-times it was concluded that both, glycoprotein and protein are bound on the lipid bilayer. Our data also suggest that the thickness of the lipid bilayer is significantly changed in this case. The observation suggests strongly that the limiting step in the transfer of pyrene is not the dissociation of pyrene, but the uptake of the pyrene monomers by the lipid phase.  相似文献   

11.
The interactions of salmon calcitonin with a number of phospholipids are studied by electron microscopy, circular dichroism and the leakage of carboxyfluorescein. At room temperature, calcitonin reacts strongly with dimyristoylphosphatidylglycerol and egg phosphatidic acid, while only moderate or no interaction is observed with several other phospholipids. The interaction is judged by the dissolution of the phospholipid dispersion and by electron microscopic observation and is in general concomitant with an increase in the helical content of the peptide. The electrostatic charge and the transition temperature of each of the phospholipids are important factors in determining the extent of reaction with salmon calcitonin. An exception is the sulphatide from bovine brain. The resulting morphology of the complex formed between salmon calcitonin and phosphatidic acid is quite different from that formed with phosphatidylglycerol. In the case of phosphatidylglycerol and most other negatively charged phospholipids, disc-shaped complexes are observed under the electron microscope by negative staining. The calcitonin- DMPG complexes are about 7 nm thick and their diameter increases with an increasing lipid-to-peptide ratio. In contrast, phosphatidic acids form spherical complexes with salmon calcitonin causing large multilamellar structures to spontaneously break-up into smaller particles of about 10 to 20 nm in diameter independent of the lipid-to-peptide ratio. The contrasting effects of salmon calcitonin on the morphology of these two phospholipids is explicable by consideration of the size of the lipid headgroup. Phosphatidic acid can accommodate the peptide without rupture of the bilayer, while the larger headgroup of phosphatidylglycerol requires the bilayer to rupture. This model is supported by studies of calcitonin-induced leakage of carboxyfluorescein from sonicated vesicles of 75% egg phosphatidylcholine and 25% either egg phosphatidic acid, egg phosphatidylglycerol or dimyristoylphosphatidylglycerol . There was a much greater increase in carboxyfluorescein leakage from phosphatidylglycerol-containing vesicles induced by salmon calcitonin demonstrating the greater ability of the peptide to rupture bilayers containing this phospholipid.  相似文献   

12.
Pyrene excimer/monomer (E/M) ratios have been compared with the steady-state fluorescence polarization (P) of diphenylhexatriene (DPH) in multilamellar liposomes of dilaurylphosphatidylcholine and rat liver microsomes. The purpose was to use the well-understood properties of DPH to reveal the nature of bilayer fluidity which pyrene manifests as an E/M ratio. Reducing the temperature (from 37 degrees C to 8 degrees C), increasing the hydrostatic pressure (from 0.1 to 70 MPa), and, in liposomes, cholesterol enrichment (up to 0.30 mole fraction) separately decreased the E/M ratios and increased P. The pyrene membrane/buffer partition coefficient was affected by temperature but not by pressure, and in the case of cholesterol enrichment, it was assumed to be unaffected. Plots of P as a function of the E/M ratio showed the two to be closely correlated (r = 0.99 in liposomes and 0.96 in microsomes), independent of the treatment used to reduce fluidity. The apparent activation volume and enthalpy for excimer formation was calculated and compared with published data. Pyrene E/M ratios probably reflect the intermolecular volume (fluidity) of the outer region of the bilayer, which is reduced by a decrease in temperature and an increase in pressure and cholesterol. DPH reports the bilayer interior, which is similarly ordered by the experimental treatments. The regional distinction between the two probes, however, accounts for the divergence of E/M ratios and P, which has been reported in membranes enriched with fluidizing fatty acids.  相似文献   

13.
The interactions of salmon cacitonin with a number of phospholipids are studied by electron microscopy, circular dichroism and the leakage of carboxyfluorescein. At room temperature, calcitonin reacts strongly with dimyristoylphosphatidylglycerol and egg phosphatidic acid, while only moderate or no interaction is observed with several other phospholipids. The interaction is judged by the dissolution of the phospholipid dispersion and by electron microscopic observation and is in general concomitant with an increase in the helical content of the peptide. The electrostatic charge and the transition temperature of each of the phospholipids are important factors in determining the extent of reaction with salmon calcitonin. An exception is the sulphatide from bovine brain. The resulting morphology of the complex formed between salmon calcitonin and phosphatidic acid is quite different from that formed with phosphatidylglycerol. In the case of phosphatidylglycerol and most other negatively charged phospholipids, disc-shaped complexes are observed under the electron microscope by negative staining. The calcitonin-DMPG complexes are about 7 nm thick and their diameter increases with an increasing lipid-to-peptide ratio. In contrast, phosphatidic acids form spherical complexes with salmon calcitonin causing large multilamellar structures to spontaneously break-up into smaller particles of about 10 to 20 nm in diameter independent of the lipid-to-peptide ratio. The contrasting effects of salmon calcitonin on the morphology of these two phospholipids is explicable by consideration of the size of the lipid headgroup. Phosphatidic acid can accommodate the peptide without rupture of the bilayer, while the larger headgroup of phosphatidylglycerol requires the bilayer to rupture. This model is supported by studies of calcitonin-induced leakage of carboxyfluorescein from sonicated vesicles of 75% egg phosphatidylcholine and 25% either egg phosphatidic acid, egg phosphatidylglycerol or dimyristoylphosphatidylglycerol. There was a much greater increase in carboxyfluorescein leakage from phosphatidylglycerol-containing vesicles induced by salmon calcitonin demonstrating the greater ability of the peptide to rupture bilayers containing this phospholipid.  相似文献   

14.
Poly(ethylene glycol) (PEG) decorated lipid bilayers are widely used in biomembrane and pharmaceutical research. The success of PEG-lipid stabilized liposomes in drug delivery is one of the key factors for the interest in these polymer/lipid systems. From a more fundamental point of view, it is essential to understand the effect of the surface grafted polymers on the physical-chemical properties of the lipid bilayer. Herein we have used cryo-transmission electron microscopy and dynamic light scattering to characterize the aggregate structure and phase behavior of mixtures of PEG-lipids and distearoylphosphatidylcholine or dipalmitoylphosphatidylcholine. The PEG-lipids contain PEG of molecular weight 2000 or 5000. We show that the transition from a dispersed lamellar phase (liposomes) to a micellar phase consisting of small spherical micelles occurs via the formation of small discoidal micelles. The onset of disk formation already takes place at low PEG-lipid concentrations (<5 mol %) and the size of the disks decreases as more PEG-lipid is added to the lipid mixture. We show that the results from cryo-transmission electron microscopy correlate well with those obtained from dynamic light scattering and that the disks are well described by an ideal disk model. Increasing the temperature, from 25 degrees C to above the gel-to-liquid crystalline phase transition temperature for the respective lipid mixtures, has a relatively small effect on the aggregate structure.  相似文献   

15.
In order to obtain more information on membrane phenomena occurring at the cell surface of rabbit thymocytes we have performed experiments aimed at altering the lipid composition of the plasma membrane. Thymocytes were incubated at 37°C with phospholipid vesicles of different compositions. Vesicle-cell interaction was followed by measuring the degree of fluorescence polarization and the uptake of vesicle-entrapped carboxyfluorescein. Neutral and negatively charged liposomes prepared from egg phosphatidylcholine are currently used in investigations of vesicle-cell interaction. In this report we show that these liposomes do not interact with rabbit thymocytes as is evident from unaltered lipid fluidity measured in whole cells and in isolated plasma membranes. This was confirmed by experiments with vesicle-entrapped carboxyfluorescein showing hardly any uptake of the fluorophor from neutral and negatively charged egg phosphatidylcholine liposomes. Using both techniques substantial interaction was found with positively charged egg phosphatidylcholine liposomes and with liposomes prepared from soybean lecithin which is composed of a variety of phospholipids. The results of these experiments were supported by lipid analysis of cells treated with soybean lecithin liposomes. Increase in phosphatidylcholine contents of mixed phospholipid vesicles was further shown to result in decreased vesicle-cell interaction. From measurements of the quantity of carboxyfluorescein inside cells and the total amount of cell-associated carboxyfluorescein it is concluded that adsorption plays a prominent role in interaction between liposomes and rabbit lymphocytes. The grade of maturation of lymphocytes was also found to affect vesicle-cell interaction. The more mature thymocytes took up more vesicle-entrapped carboxyfluorescein from soybean liposomes than immature thymocytes. Mesenteric lymph node cells exhibited a still stronger interaction. The role of vesicle and cell surface charge and membrane fluidity of both vesicles and cells in interaction between liposomes and rabbit thymocytes is discussed.  相似文献   

16.
A reconstitution procedure has been developed for the incorporation of the mitochondrial F0.F1-ATPase into the bilayer of egg phosphatidylcholine vesicles. The nonionic detergent, octylglucoside, egg phosphatidylcholine, and the lipid-deficient, oligomycin-sensitive F0.F1-ATPase (Serrano, R., Kanner, B., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) were combined in a 4770:320:1 detergent/phospholipid/protein molar ratio and then centrifuged on a discontinuous sucrose gradient to isolate the F0.F1-phosphatidylcholine complex. The specific activity of the reconstituted F0.F1-ATPase was as high as 14.5 mumol/min/mg protein, whereas with no added lipid the activity ranged between 1.4 and 2.2 mumol/min/mg protein. This reconstituted preparation exhibited greater than 90% oligomycin sensitivity which demonstrated the intactness of the multisubunit enzyme complex. The phosphatidylcholine/protein molar ratio of the reconstituted F0.F1 was 250:1 with less than 0.4% of the added octylglucoside remaining. Titrations with both phosphatidylcholine and octylglucoside demonstrated that the specific activity and oligomycin sensitivity were highly dependent on the concentrations of both phospholipid and detergent in the original reconstitution mixture. Analysis of the reconstituted ATPase by electron microscopy demonstrated that the catalytic portion of the enzyme complex projected from the phospholipid bilayer with an orientation similar to that observed with submitochondrial particles. The F0.F1-phosphatidylcholine complex was able to trap inulin, which suggests a vesicular structure impermeable to macromolecules. The electrophoretic mobility of the complex was identical to that for liposomes of egg phosphatidylcholine alone. The reconstitution conditions utilized give rise to an enzyme-phospholipid complex with very low ionic charge that demonstrates high oligomycin-sensitive ATPase activity.  相似文献   

17.
It was found that complexes of the flavonoids quercetin, taxifolin, catechin and morin with divalent iron initiated an increase in light scattering in a suspension of unilamellar 100nm liposomes. The concentration of divalent iron in the suspension was 10μM. Liposomes were prepared from 1-palmitoyl-2-oleoylglycero-3-phoshpatidylcholine. The fluorescent resonance energy transfer (FRET) analysis of liposomes labeled with NBD-PE and lissamine rhodamine B dyes detected a slow lipid exchange in liposomes treated with flavonoid-iron complexes and calcium, while photon correlation spectroscopy and freeze-fracture electron microscopy revealed the aggregation and fusion of liposomes to yield gigantic vesicles. Such processes were not found in liposomes treated with phloretin because this flavonoid is unable to interact with iron. Rutin was also unable to initiate any marked changes because this water-soluble flavonoid cannot interact with the lipid bilayer. The experimental data and computer calculations of lipophilicity (cLogP) as well as the charge distribution on flavonoid-iron complexes indicate that the adhesion of liposomes is provided by an iron link between flavonoid molecules integrated in adjacent bilayers. It is supposed that calcium cations facilitate the aggregation and fusion of liposomes because they interact with the phosphate moieties of lipids.  相似文献   

18.
Summary Transbilayer diffusion of Mn2+ ions occurred in liposomes formed from dipalmitoyl-phosphatidylcholine or egg-yolk phosphatidylcholine and egg-yolk phosphatidate (molar ratio 21) containing DNA and DNase I within their aqueous compartments. Cation diffusion was demonstrated by the hydrolytic activity of DNase I, activated by the Mn2+ ions that diffused into the vesicles, and this was confirmed by light scattering. Phosphatidate, a cone-shaped lipid which has been synthesized under simulated prebiotic conditions, was necessary for cation diffusion across the liposome membranes. Such liposomes represent a simple precellular system that interchanges cations with the surroundings and provides a microenvironment for enzymatic reactions, as evidenced by the hydrolysis of DNA by DNase I inside these closed lipid compartments.  相似文献   

19.
Abstract

The definition of liposomal preparations where sensitivity to moderate drops of pH (i.e. from 7.4 to 6.8) can be induced by the presence of plasma itself has been investigated. Liposome stability was monitored using 5,6-carboxyfluorescein (CF). We used sulfatide as the pH sensitive molecule on the basis of our previous studies in which we demonstrated an enhanced anti-tumor activity against a transplantable metastatic tumor model for ADM entrapped liposomes containing sulfatide. The amount of CF released at pH 6.8 in the presence of 50% plasma from small unilamellar vesicles (SUV), composed of egg phosphatidylcholine (EPC) and bovine brain sulfatide (CS) (4:1 m/m), was 3-fold that at pH 7.4, whereas no significant differences were observed when the same liposomes were incubated in buffer at 7.4 and 6.8 respectively. The plasma dependent pH sensitivity of these liposomes seems to specifically depend on the presence of sulfatide in the bilayer since neither cholesterol 3 sulfate (Choi 3S) nor galactocerebroside, are able to induce pH sensitivity in EPC liposomes. Of all the plasma components considered, VLDL seemed preferentially involved in the pH sensitivity induced by CS since they promoted an almost complete release of CF from EPC-CS liposomes at pH 6.8.  相似文献   

20.
The interaction of the antineoplastic agent adriamycin with sonicated liposomes composed of phosphatidylcholine alone and with small amounts (1-6%) of cardiolipin has been studied by fluorescence techniques. Equilibrium binding data show that the presence of cardiolipin increases the amount of drug bound to liposomes when the bilayer is below its phase transition temperature and when the ionic strength is relatively low (0.01 M). At higher ionic strength (0.15 M) and above the Tm (i.e. conditions which are closer to the physiological state) the binding of the drug to the two liposome types is nearly the same. Thus the differences in the interactions of adriamycin with cardiolipin-containing membranes, as opposed to those composed of phosphatidylcholine alone, are not due simply to increased binding but rather to an altered membrane structure when this lipid is present. Quenching of adriamycin fluorescence by iodide shows that bound drug is partially, but not completely, buried in the liposomal membrane. Both in the presence and absence of cardiolipin the bulk of the adriamycin is more accessible to the quencher below the Tm than above it; that is, a solid membrane tends to exclude the drug from deep penetration. Above the Tm, the presence of cardiolipin alters the nature of liposome-adriamycin interaction. Here the fluorescence quenching data suggest that the presence of small amounts of cardiolipin (3%) in a phosphatidylcholine matrix creates two types of binding environments for drug, one relatively exposed and the other more deeply buried in the membrane. The temperature dependence of the adriamycin fluorescence and the liposome light scattering reveal that cardiolipin alters the thermal properties of the bilayer as well as its interaction with adriamycin. At low ionic strength lateral phase separations may occur with both pure phosphatidylcholine and when 3% cardiolipin is present; under these conditions the bound adriamycin exists in two kinds of environment. It is notable that only adriamycin fluorescence reveals this phenomenon; thebulk property of liposome light scattering reports only on the overall membrane phase change. These data suggest that under certain conditions the drug binding sites in the membranes are decoupled from the bulk of the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号