首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alpha-galactosidase gene has been cloned from the human colonic Bacteroides species Bacteroides ovatus 0038. This alpha-galactosidase appears to be distinct from two previously characterized alpha-galactosidases, I and II, from the same strain and has been designated alpha-galactosidase III. Partially purified alpha-galactosidase III from Escherichia coli EM24 containing pFG61 delta SE had a pI of 7.6, as compared with the reported pI values for the known alpha-galactosidases of 5.6 for I and 6.9 for II. Its molecular weight as estimated on sodium dodecyl sulfate-polyacrylamide gels was 78,000, whereas the molecular weights of alpha-galactosidases I and II were 85,000 and 80,500, respectively. The only substrate hydrolyzed by alpha-galactosidase III was melibiose, whereas the other two alpha-galactosidases were able to degrade melibiose, raffinose, and stachyose and partially degraded guar gum. alpha-Galactosidase III had a pH optimum of 6.7 to 7.2. Finally, a single crossover insertion which disrupted the gene in the B. ovatus chromosome had no effect on expression of alpha-galactosidases I and II. Although this insertion had no effect on the ability of B. ovatus to grow in laboratory medium on any of the galactoside-containing carbohydrates tested, the insertion mutant was outcompeted by wild type when a combination of mutant and wild type was used to colonize germfree mice. Insertions on either side of the gene had the same effect. Thus, the locus which contains alpha-galactosidase III may be important for colonization in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An alpha-galactosidase gene has been cloned from the human colonic Bacteroides species Bacteroides ovatus 0038. This alpha-galactosidase appears to be distinct from two previously characterized alpha-galactosidases, I and II, from the same strain and has been designated alpha-galactosidase III. Partially purified alpha-galactosidase III from Escherichia coli EM24 containing pFG61 delta SE had a pI of 7.6, as compared with the reported pI values for the known alpha-galactosidases of 5.6 for I and 6.9 for II. Its molecular weight as estimated on sodium dodecyl sulfate-polyacrylamide gels was 78,000, whereas the molecular weights of alpha-galactosidases I and II were 85,000 and 80,500, respectively. The only substrate hydrolyzed by alpha-galactosidase III was melibiose, whereas the other two alpha-galactosidases were able to degrade melibiose, raffinose, and stachyose and partially degraded guar gum. alpha-Galactosidase III had a pH optimum of 6.7 to 7.2. Finally, a single crossover insertion which disrupted the gene in the B. ovatus chromosome had no effect on expression of alpha-galactosidases I and II. Although this insertion had no effect on the ability of B. ovatus to grow in laboratory medium on any of the galactoside-containing carbohydrates tested, the insertion mutant was outcompeted by wild type when a combination of mutant and wild type was used to colonize germfree mice. Insertions on either side of the gene had the same effect. Thus, the locus which contains alpha-galactosidase III may be important for colonization in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. A method is described for the rapid isolation of alpha-galactosidases A and B (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) from normal human liver. 2. When the same method is applied to Fabry liver, most of the alpha-galactosidase activity is recovered in the fraction corresponding to normal alpha-galactosidase B. In agreement with Romeo, G., D'Urso, M., Pisacane, A., Blum, E., De Falco, A. and Ruffilli, A. (1975) Biochem. Genet. 13, 615-628) [18], a small amount of alpha-galactosidase activity is found in the fraction corresponding to normal alpha-galactosidase A. 3. The kinetic properties of the B-like activity from Fabry liver are similar to those of normal alpha-galactosidase B. In agreement with Romeo et al. [18], it was found that the kinetic properties of the A-like activity from Fabry liver are similar to those of normal alpha-galactosidase A. 4. Using antisera raised against normal alpha-galactosidase A and normal alpha-galactosidase B, it is shown that the normal alpha-galactosidase isoenzymes are immunologically distinct and that the B-like activity from Fabry liver is immunologically related to normal alpha-galactosidase B. Furthermore, the A-like activity from Fabry liver is immunologically related to normal alpha-galactosidase B and not to normal alpha-galactosidase A. 5. Normal alpha-galactosidase B is converted into an A-like form during storage. 6. It is concluded that the B-like alpha-galactosidase in Fabry tissues is identical to normal alpha-galactosidase B, and that the small amount of A-like activity found in Fabry material is due to a modified form of alpha-galactosidase B.  相似文献   

4.
The aga gene coding for alpha-galactosidase in Streptococcus mutans was detected in a recombinant gene library constructed in phage lambda. The gene was subcloned into plasmid vectors and shown to specify a novel protein of Mr 80,000. Characterization of alpha-galactosidase from S. mutans and from recombinant Escherichia coli expressing aga indicated that the enzyme functions as a tetramer. The amino acid composition of the alpha-galactosidase, deduced from nucleotide sequencing of aga, gave a predicted Mr of 82,022 and revealed regions of homology to alpha-galactosidases encoded by the E. coli Raf plasmids and by Bacillus stearothermophilus. Inactivation of the aga gene in S. mutans resulted in loss of all alpha-galactosidase activity and abolished the ability to ferment melibiose; alpha-glucosidase activity was also lost, due to an indirect effect on the dexB gene.  相似文献   

5.
There are three midgut alpha-galactosidases (TG1, TG2, TG3) from Tenebrio molitor larvae that are partially resolved by ion-exchange chromatography. The enzymes have approximately the same pH optimum (5.0), pl value (4.6) and Mr value (46000-49000) as determined by gel filtration or native electrophoresis run in polyacrylamide gels with different concentrations. Substrate specificities and functions were proposed for the major T. molitor midgut alpha-galactosidases (TG2 and TG3) based on chromatographic, carbodiimide inactivation, Tris inhibition, and on substrate competition data. Thus, TG2 would hydrolyse alpha-1,6-galactosaccharides, exemplified by raffinose, whereas TG3 would act on melibiose and apparently also on digalactosyldiglyceride, the most important compound in the thylacoid membranes of chloroplasts. Most galactoside digestion should occur in the lumen of the first two thirds of T. molitor larval midguts, since alpha-galactosidase activity predominates there. Spodoptera frugiperda larvae have three midgut alpha-galactosidases (SG1, SG2, SG3) partially resolved by ion-exchange chromatography. The enzymes have similar pH optimum (5.8), pl value (7.2) and Mr value (46000-52000), and at least the major alpha-galactosidase must have an active carboxyl group in the active site. Based on data similar to those described for T. molitor, SG1 and SG3 should hydrolyse melibiose and SG3 should digest raffinose and, perhaps, also digalactosyldiglyceride. The midgut distribution of alpha-galactosidase activity supports the proposal that alpha-galactosidase digestion occurs at the surface of anterior midgut cells in Spodoptera frugiperda larvae.  相似文献   

6.
In most human tissues there are at least two different alpha-galactosidases, A and B. The former is deficient in patients hemizygous for Fabry disease. We have isolated it from human placenta and found that it was labile even at culture conditions, but was stabilized after binding to concanavalin A (conA). The alpha-galactosidase activity was markedly increased in Fabry fibroblasts when these were treated with conA and exposed to alpha-galA at 37 degrees C. The maximum activity was obtained after 1/2-2 h of incubation and was maintained for at least 4 h. The binding and uptake of conA into Fabry cells was followed by microscopical studies of fluorescein-labelled conA. We assume that alpha-galA is taken up by endocytosis of the enzyme-conA complex.  相似文献   

7.
Surface carbohydrates of Friend erythroleukemic-cells were modified by treatment with the exoglycosidases, alpha-galactosidase, beta-galactosidase, and neuraminidase without affecting cell growth and viability either in the presence of absence of 1.8% DMSO as inducer. When cells were incubated with a combination of alpha-galactosidase and neuraminidase and then induced, they showed an increased rate of differentiation as measured by the formation of benzidine-positive cells. These enzymes used singly, or beta-galactosidase treatment alone, or in combination with neuraminidase, did not change the rate of differentiation. Cell-surface labeling and electrophoretic separation of the glycoconjugates revealed that two regions of approximate molecular weights of 195,000 and 185,000 were neuraminidase-sensitive and one other of molecular weight of about 75,000 was sensitive to alpha-galactosidase. Both untreated and the combined alpha-galactosidase, neuraminidase-modified cells exhibited the same rate of uptake of carbon-14 DMSO, ruling out the possibility that the observed increased rate of differentiation was due to faster penetration of DMSO into enzyme-treated cells. On the other hand, the decrease in the rate of uptake of rubidium-86, an analogue of K+, by treated-induced cells was significantly enhanced over that observed with untreated-induced cells, suggesting that alpha-galactosidase plus neuraminidase modification of the cell surface was affecting at least one of the early events occurring in the Friend erythroleukemic cell differentiation program.  相似文献   

8.
A variant of apolipoprotein E, denoted E Bethesda, has been identified in the plasma of a 72-year-old woman with type III hyperlipoproteinemia. An offspring of the proband also has this variant and type III hyperlipoproteinemia. Apolipoprotein E Bethesda was isolated by preparative isoelectrofocusing followed by preparative SDS-polyacrylamide gel electrophoresis from the very low density lipoproteins of the proband's son. The purity and the identity of the preparation were analyzed by analytical SDS-polyacrylamide gel electrophoresis, two-dimensional gel electrophoresis and by immunochemical analysis. Apolipoprotein E Bethesda migrates in the E 1 position and its electrophoretic mobility is not affected by neuraminidase treatment. The protein is shifted to the E3 position after cysteamine treatment. The amino acid composition revealed the presence of two cysteine residues. These data support the concept that the apolipoprotein E Bethesda allele is derived from a mutation of the E2 or E2* allele.  相似文献   

9.
Five alpha-galactosidases (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) were identified by chromatography and by their different electrophoretic mobilities, in the germinated seeds of Trifolium repens (white clover). alpha-Galactosidases II, III and IV were purified to homogeneity, with increases in specific activity of approx. 4600-, 4900- and 2800-fold respectively. The enzymes were purified by a procedure that included (NH4)2SO4 precipitation, hydroxyapatite, Sephadex G-75 and DEAE-cellulose chromatography, and preparative polyacrylamide-gel disc electrophoresis. The purified enzymes showed a single protein band, corresponding to the alpha-galactosidase activity, when examined by polyacrylamide-gel electrophoresis. The pH optimum was determined with o-nitrophenyl alpha-D-galactoside and the galactomannan of T. repens To as substrate. All three enzymes are highly thermolabile. Hydrolysis of oligosaccharides and galactomannans was examined, including two galactomannans from the germinated seed of T. repens (T24 and T36). By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis the mol.wts. of the multiple forms of enzyme were found to be identical (41 000).  相似文献   

10.
A library of Pseudomonas fluorescens subsp. cellulosa genomic DNA, constructed in lambda ZAPII, was screened for alpha-D-galactosidase activity. The DNA inserts from six galactosidase-positive clones were rescued into plasmids. Restriction digestion and Southern analysis revealed that each of the plasmids contained a common DNA sequence. The sequence of the Pseudomonas DNA in one of the plasmids revealed a single open reading frame (aga27A) of 1215 bp encoding a protein of M(r) 45900, designated alpha-galactosidase 27A (Aga27A). Aga27A exhibited extensive sequence identity with alpha-galactosidases in glycoside hydrolase 27, and appeared to be a single domain protein. The recombinant alpha-galactosidase was expressed at high levels in Escherichia coli and the biophysical properties and substrate specificity of the enzyme were evaluated. The data showed that Aga27A was a mesophilic neutral acting non-specific alpha-galactosidase. Both P. fluorescens subsp. cellulosa mannanase A (ManA) and Aga27A hydrolyse the polymeric substrate, carob galactomannan. Sequential hydrolysis with AgaA followed by ManA, or ManA followed by AgaA enhanced product release. The positive effects of sequential hydrolysis are discussed.  相似文献   

11.
Summary Six newly observed Gc variants are described. The variants Gc 1A10, 1A11, 1A12, 1A13, and 1C11 have double band patterns. The anodal bands of these variants are susceptible to neuraminidase treatment. Gc 2A7 is a single band variant which is not altered by neuraminidase incubation. Polyacrylamide gel isoelectrofocusing with immunofixation and polyarcylamide gel electrophoresis appear to be efficient methods for the analysis of the Gc system.  相似文献   

12.
13.
We have studied the potential of several newly cloned alpha-galactosidases to catalyze the regioselective synthesis of disaccharides using 4-nitrophenylgalactoside as a donor. The kinetics of the reactions were followed by in situ NMR spectroscopy. The following thermophilic enzymes have been tested: Aga A and an isoenzyme Aga B obtained from the strain KVE39 and Aga 285 from the strain IT285 of Bacillus stearothermophilus; Aga T is an alpha-galactosidase from Thermus brockianus (strain IT360). Two other non-thermophilic alpha-galactosidases have also been evaluated: Aga 1 (Streptococcus mutans, strain Ingbritt) and Raf A (Escherichia coli, strain D1021). For all of the enzymes studied, high regioselectivity was observed leading to two (1 --> 6)-disaccharides: 4-nitrophenyl alpha-D-galactopyranosyl-(1--> 6)-alpha-D-galactopyranoside and methyl alpha-D-galactopyranosyl-(1--> 6)-alpha-D-galactopyranoside, which were obtained in 54% (Aga B) and 20% (Aga T) yields, respectively.  相似文献   

14.
Gao Z  Schaffer AA 《Plant physiology》1999,119(3):979-988
The cucurbits translocate the galactosyl-sucrose oligosaccharides raffinose and stachyose, therefore, alpha-galactosidase (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) is expected to function as the initial enzyme of photoassimilate catabolism. However, the previously described alkaline alpha-galactosidase is specific for the tetrasaccharide stachyose, leaving raffinose catabolism in these tissues as an enigma. In this paper we report the partial purification and characterization of three alpha-galactosidases, including a novel alkaline alpha-galactosidase (form I) from melon (Cucumis melo) fruit tissue. The form I enzyme showed preferred activity with raffinose and significant activity with stachyose. Other unique characteristics of this enzyme, such as weak product inhibition by galactose (in contrast to the other alpha-galactosidases, which show stronger product inhibition), also impart physiological significance. Using raffinose and stachyose as substrates in the assays, the activities of the three alpha-galactosidases (alkaline form I, alkaline form II, and the acid form) were measured at different stages of fruit development. The form I enzyme activity increased during the early stages of ovary development and fruit set, in contrast to the other alpha-galactosidase enzymes, both of which declined in activity during this period. In the mature, sucrose-accumulating mesocarp, the alkaline form I enzyme was the major alpha-galactosidase present. We also observed hydrolysis of raffinose at alkaline conditions in enzyme extracts from other cucurbit sink tissues, as well as from young Coleus blumei leaves. Our results suggest different physiological roles for the alpha-galactosidase forms in the developing cucurbit fruit, and show that the newly discovered enzyme plays a physiologically significant role in photoassimilate partitioning in cucurbit sink tissue.  相似文献   

15.
An alpha-galactosidase gene from Thermus brockianus ITI360 was cloned, sequenced, and expressed in Escherichia coli, and the recombinant protein was purified. The gene, designated agaT, codes for a 476-residue polypeptide with a calculated molecular mass of 53, 810 Da. The native structure of the recombinant enzyme (AgaT) was estimated to be a tetramer. AgaT displays amino acid sequence similarity to the alpha-galactosidases of Thermotoga neapolitana and Thermotoga maritima and a low-level sequence similarity to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme is thermostable, with a temperature optimum of activity at 93 degrees C with para-nitrophenyl-alpha-galactopyranoside as a substrate. Half-lives of inactivation at 92 and 80 degrees C are 100 min and 17 h, respectively. The pH optimum is between 5.5 and 6.5. The enzyme displayed high affinity for oligomeric substrates. The K(m)s for melibiose and raffinose at 80 degrees C were determined as 4.1 and 11.0 mM, respectively. The alpha-galactosidase gene in T. brockianus ITI360 was inactivated by integrational mutagenesis. Consequently, no alpha-galactosidase activity was detectable in crude extracts of the mutant strain, and it was unable to use melibiose or raffinose as a single carbohydrate source.  相似文献   

16.
The mutant products Q279E ((279)Gln to Glu) and R301Q ((301)Arg to Gln) of the X-chromosomal inherited alpha-galactosidase (EC 3.2.1. 22) gene, found in unrelated male patients with variant Fabry disease (late-onset cardiac form) were characterized. In contrast to patients with classic Fabry disease, who have no detectable alpha-galactosidase activity, atypical variants have residual enzyme activity. First, the properties of insect cell-derived recombinant enzymes were studied. The K(m) and V(max) values of Q279E, R301Q, and wild-type alpha-galactosidase toward an artificial substrate, 4-methylumbelliferyl-alpha-D-galactopyranoside, were almost the same. In order to mimic intralysosomal conditions, the degradation of the natural substrate, globotriaosylceramide, by the alpha-galactosidases was analyzed in a detergent-free-liposomal system, in the presence of sphingolipid activator protein B (SAP-B, saposin B). Kinetic analysis revealed that there was no difference in the degradative activity between the mutants and wild-type alpha-galactosidase activity toward the natural substrate. Then, immunotitration studies were carried out to determine the amounts of the mutant gene products naturally occurring in cells. Cultured lymphoblasts, L-57 (Q279E) and L-148 (R301Q), from patients with variant Fabry disease, and L-20 (wild-type) from a normal subject were used. The 50% precipitation doses were 7% (L-57) and 10% (L-148) of that for normal lymphoblast L-20, respectively. The residual alpha-galactosidase activity was 3 and 5% of the normal level in L-57 and L-148, respectively. The quantities of immuno cross-reacting materials roughly correlated with the residual alpha-galactosidase activities in lymphoblast cells from the patients. Compared to normal control cells, fibroblast cells from a patient with variant Fabry disease, Q279E mutation, secreted only small amounts of alpha-galactosidase activity even in the presence of 10 mM NH(4)Cl. It is concluded that Q279E and R301Q substitutions do not significantly affect the enzymatic activity, but the mutant protein levels are decreased presumably in the ER of the cells.  相似文献   

17.
Two putative alpha-galactosidase genes from rice (Oryza sativa L. var. Nipponbare) belonging to glycoside hydrolase family 27 were cloned and expressed in Escherichia coli. These enzymes showed alpha-galactosidase activity and were purified by Ni Sepharose column chromatography. Two purified recombinant alpha-galactosidases (alpha-galactosidase II and III; alpha-Gal II and III) showed a single protein band on SDS-PAGE with molecular mass of 42 kDa. These two enzymes cleaved not only alpha-D-galactosyl residues from the non-reducing end of substrates such as melibiose, raffinose, and stachyose, but also liberated the galactosyl residues attached to the O-6 position of the mannosyl residue at the reducing-ends of mannobiose and mannotriose. In addition, these enzymes clipped the galactosyl residues attached to the inner-mannosyl residues of mannopentaose. Thus, alpha-Gal II catalyzes efficient degalactosylation of galactomannans, such as guar gum and locust bean gum.  相似文献   

18.
The evolutionary potential of a thermostable alpha-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid alpha-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (DeltaagaT) by transformation. This selector strain is unable to metabolize melibiose (alpha-galactoside) without recombinant alpha-galactosidases, because the native alpha-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67 degrees C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N'-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant alpha-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.  相似文献   

19.
Two alpha-galactosidases were purified to homogeneity from the enzymatic complex of the mycelial fungus Penicillium canescens using chromatography on different sorbents. Substrate specificity, pH- and temperature optima of activity, stability under different pH and temperature conditions, and the influence of effectors on the catalytic properties of both enzymes were investigated. Genes aglA and aglC encoding alpha-galactosidases from P. canescens were isolated, and amino acid sequences of the proteins were predicted. In vitro feed testing (with soybean meal and soybean byproducts enriched with galactooligosaccharides as substrates) demonstrated that both alpha-galactosidases from P. canescens could be successfully used as feed additives. alpha-Galactosidase A belonging to the 27th glycosyl hydrolase family hydrolyzed galactopolysaccharides (galactomannans) and alpha-galactosidase C belonging to the 36th glycosyl hydrolase family hydrolyzed galactooligosaccharides (stachyose, raffinose, etc.) of soybean with good efficiency, thus improving the digestibility of fodder.  相似文献   

20.
The alpha-galactosidase from rice cell suspension cultures was purified to homogeneity by different techniques including affinity chromatography using N-epsilon-aminocaproyl-alpha-D-galactopyranosylamine as the ligand. From 11 l of culture filtrate, 28.7 mg of purified enzyme was obtained with an overall yield of 51.9%. The cDNA coding for the alpha-galactosidase was cloned and sequenced. The enzyme was found to contain 417 amino acid residues composed of a 55 amino acid signal sequence and 362 amino acid mature alpha-galactosidase; the molecular weight of the mature enzyme was thus calculated to be 39,950. Seven cysteine residues were also found but no putative N-glycosylation sites were present. The observed homology between the deduced amino acid sequences of the mature enzyme and alpha-galactosidases from coffee (Coffea arabica), guar (Cyamopsis tetragonolooba), and Mortierella vinacea alpha-galactosidase II were over 73, 72, and 45%, respectively. The enzyme displayed maximum activity at 45 degrees C when p-nitrophenyl-alpha-D-galactopyranoside was used as substrate. The rice alpha-galactosidase and Mortierella vinacea alpha-galactosidase II acted on both the terminal alpha-galactosyl residue and the side-chain alpha-galactosyl residue of the galactomanno-oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号