首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken gizzard myosin   总被引:8,自引:0,他引:8  
  相似文献   

2.
Actin-activation of unphosphorylated gizzard myosin   总被引:2,自引:0,他引:2  
The effect of light chain phosphorylation on the actin-activated ATPase activity and filament stability of gizzard smooth muscle myosin was examined under a variety of conditions. When unphosphorylated and phosphorylated gizzard myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, and when they were filamentous, their MgATPase activities could be stimulated by actin. At pH 7.0, the unphosphorylated myosin in the presence of ATP required 2-3 times as much Mg2+ for filament formation as did the phosphorylated myosin. The amount of stimulation of the unphosphorylated myosin filaments depended upon pH, temperature, and the presence of tropomyosin. At pH 7.0 and 37 degrees C and at pH 6.8 and 25 degrees C, the MgATPase activity of filamentous, unphosphorylated, gizzard myosin was stimulated 10-fold by actin complexed with gizzard tropomyosin. These tropomyosin-actin-activated ATPase activities were 40% of those of the phosphorylated myosin. Under other conditions, pH 7.5 and 37 degrees C and pH 7.0 and 25 degrees C, even though the unphosphorylated myosin was mostly filamentous, its MgATPase activity was stimulated only 4-fold by tropomyosin-actin. Thus, both unphosphorylated and phosphorylated gizzard myosin filaments appear to be active, but the cycling rate of the unphosphorylated myosin is less than that of the phosphorylated myosin. Active unphosphorylated myosin may help explain the ability of smooth muscles to maintain tension in the absence of myosin light chain phosphorylation.  相似文献   

3.
With large amounts of gizzard Mr 135,000 calmodulin-binding protein (myosin light chain kinase), the phosphate incorporation into myosin light chains was determined to be 2 mol/mol of myosin light chain. The actin-activated ATPase activity was dramatically enhanced when myosin light chains were phosphorylated by more than 1 mol of phosphate incorporated/mol of myosin light chain.  相似文献   

4.
5.
Two different HMM species of gizzard myosin were prepared under conditions such that the phosphorylation of light chain was fully maintained. They were different in the N-terminal structure of the heavy chain but not in the light chain composition. A significant decrease in the Mg2+-ATPase activity was observed in one class of HMM which was proteolytically cleaved intramolecularly at site 1, 5 K daltons from the masked N terminus. Another class of HMM without the cleavage at site 1 showed ATPase activity similar to that of myosin. The decrease in ATPase activity was not caused by denaturation since similar amounts of initial burst of Pi liberation were observed with both HMMs and myosin. Kinetic and substructure analyses of HMM revealed that the activity change depended solely on the cleavage at site 1. The N-terminal region of gizzard myosin heavy chain may thus have an important role in maintaining the active site structure.  相似文献   

6.
7.
The pattern of incorporation of [14C]N-ethylmaleimide (MalNEt) into gizzard myosin indicates the presence of two classes of thiols: rapidly and slowly modified. The first class contains two thiol residues, SH-A and SH-B, located in the myosin rod and the 17-kDa light chain, respectively, while the second contains at least two thiols located in the myosin heavy chain. Changes in ATPase activities upon modification occur rapidly or slowly, paralleling reaction of either the first or second class of thiols. Rapid changes include increases in the Ca2+- and Mg2+-activated activities of myosin alone, measured at ionic strengths below 0.3 M, and an increase and a decrease in the actin-activated activity of dephosphorylated and phosphorylated myosin, respectively. Modification of SH-A and SH-B with MalNEt is accompanied by stabilization of myosin filaments, seen as an increase in light-scattering intensity, and by destabilization of the folded, 10 S conformation of the myosin monomer. In the presence of 0.175 M NaCl and 1 mM MgATP, unmodified and MalNEt-modified myosin sediment in the ultracentrifuge as single components at 10.0 S and 6.0 S, respectively. The MalNEt-induced increase in the Ca2+- or Mg2+-activated ATPase activity, measured in the absence of actin, can be attributed either to stabilization of filaments or to destabilization of the 10 S conformation, depending on the ionic strength of the assay. Modification of the second class of thiols is accompanied by a decrease in K+-EDTA-activated activity and an increase in Ca2+-activated activity measured above 0.3 M NaCl, where myosin neither forms filaments nor assumes the 10 S conformation. These slow changes are characteristic of blocking the SH-1 thiols of skeletal-muscle myosin, but in gizzard myosin are attributable to modification of a less reactive thiol, SH-C.  相似文献   

8.
The addition of large amounts of myosin light chain kinase to the reconstituted gizzard actomyosin shows diphosphorylation of 20 kDa myosin light chain. Accompanying diphosphorylation, the actin-activated myosin ATPase activity was also enhanced. The extent of diphosphorylation and the myosin ATPase activity were clearly demonstrated to be in a linear relationship. From the time course experiment, the conversion of monophosphorylated light chain into one which was diphosphorylated seemed to be a sequential process. Moreover, analyzing phospho-amino acid by using a two-dimensional electrophoresis technique revealed that monophosphorylated light chain contained phosphoserine and diphosphorylated one contained phosphothreonine in addition to phosphoserine.  相似文献   

9.
Modification of chicken gizzard myosin with phenyl[2-14C]-glyoxal inhibited the K+-ATPase (ATP phosphohydrolase, EC 3.6.1.32) activity as a function of time. During the 2.5 and 15 min interval 3.2 mol of the reagent were incorporated per 4.7 X 10(5) g protein and the K+-ATPase activity was 50% inhibited. Phenylglyoxal reacted with arginine residues of gizzard myosin in a mol ratio of two to one, phenylglyoxal to arginine as determined spectrophotometrically. The modification was limited to the subfragment 1 heavy chain and rod-like regions and none of the light chains were lost. The inhibition of the ATPase activity occurred when the subfragment 1 region was modified predominantly. The same results were obtained when the myosin was phosphorylated and then incubated with phenylglyoxal. Substrate MgATP2- or MgADP enhanced the inactivation of gizzard myosin; there was an increase in the incorporation of the reagent and a change in the distribution into the heavy chains. Approx. 0.5 mol of the nucleotide was bound to 4.7 X 10(5) g of phenylglyoxal myosin. Conformational changes, induced by these modifications, were responsible for the inhibition of enzymic activity. Arginine residues of gizzard myosin are necessary for the maintenance of the ATPase activity of this contractile protein.  相似文献   

10.
11.
The ATPase activity of myosin from chicken gizzard measured in the presence of either Mg2+ or Ca2+ is increased in the absence of dithiothreitol or upon reaction with Cu2+, o-iodosobenzoate, or N-ethylmaleimide. Iodosobenzoate or Cu2+ produce no change in K+(EDTA)-ATPase while N-ethylmaleimide produces a decrease. These treatments also make the actin-activated ATPase insensitive to Ca2+ when assayed in the presence of tropomyosin and a partially purified myosin light chain kinase. Phosphorylation of N-ethylmaleimide modified myosin remains dependent on Ca2+ and therefore appears not to be required for activation by actin of the ATPase activity of modified myosin.  相似文献   

12.
1. Myosin from gizzards of 15-day-old chicken embryos was highly purified by ammonium sulfate fractionation in the presence of ATP and MgCl2, ultra-centrifugation and Sepharose 4B chromatography. 2. The myosin composed of heavy and three light chains as determined by sodium dodecyl sulfate (SDS) gel electrophoresis. The molecular weights of the light chains were 23,000 (L23), 20,000 (L20), and 17,000 (L17), respectively. The amount of L23 light chain decreased and disappeared, and the L17 light chain increased steadily in the course of development. The amount of L20 light chain did not change. 3. ATPase activity of the embryonic myosin was essentially the same as that of adult myosin. The change in the light chain pattern in the course of development did not correlate to the ATPase activity. 4. Antigenicity of the heavy chains in the embryonic myosin was the same as that of the adult heavy chains. However, antibodies to light chains were not detected in the antibodies to either the embryonic or adult myosins.  相似文献   

13.
Summary Antibodies to adult-type myosin and myoglobin from chicken gizzard were used to study the expression of these proteins during chicken embryogenesis. Using the indirect immunofluorescent technique, myosin was detected as discrete fluorescent foci in the central part of the presumptive chicken gizzard as early as day 5 of development. During the following days, immunoreactive myosin extends both craniocaudally as well as laterally and reaches the serosal and luminal borders by day 13/14. On day 16, the adult fascicular pattern is achieved. As judged by enzymelinked immunoassay and spectroscopic methods, myoglobin did not appear until day 18.Dedicated to Mrs. C.F. Schoenberg, Department of Anatomy, Cambridge, Great Britain  相似文献   

14.
Structure and function of chicken gizzard myosin.   总被引:24,自引:0,他引:24  
In our previous study (Onishi, H., Susuki, H., Nakamura, k., and Watanabe, S. J. Biochem. 83, 835-847, 1978), we found it to be characteristic of chicken gizzard myosin that thick filaments of gizzard myosin are readily disassembled by a stoichiometric amount of ATP (3 mol of ATP per mol of myosin), and that the ATPase activity of gizzard myosin in the ATP-disassembled state is much lower than that of gizzard myosin disassembled by a high concentration of KCl. We now report the following findings: (1) Thick filaments of (unphosphorylated) gizzard myosin can be in a bipolar structure or in a non-polar structure, depending on the method of preparing the thick filaments. (2) Thick filaments of (unphosphorylated) gizzard myosin in either the bioplar or the non-polar structure are readily disassembled by ATP. (3) Addition of rabbit skeletal C-protein does not confer ATP resistance on thick filaments of (unphosphorylated) gizzard myosin. (4) Unphosphorylated) gizzard myosin in the ATP-disassembled state is in a dimeric form as determined by ultracentrifugation. Moreover, 0.2 M KCl-dissociated gizzard myosin in monomeric form is converted to a dimeric form by ATP. (5) The Mg-ATPase activity of (unphosphorylated) gizzard myosin is much lower in its dimeric form (less than one-tenth) than in its monomeric form. The activity depression observed around 0.15 M KCl is therefore due to the formation of myosin dimers. (6) Skeletal L-meromyosin can increase the very low activity of (unphosphorylated) gizzard myosin ATPase at low ionic strength (0.13 M KCl) by forming ATP-resistant hybrid filaments with (unphosphorylated) gizzard myosin, preventing the formation of myosin dimers. (7) Gizzard myosin in which one of the light-chain components is phosphorylated by myosin light-chain kinase can form thick filaments which are resistant to the disassembling action of ATP. (8) Even in the presence of ATP, thick filaments of phosphorylated gizzard myosin do not disassembled into myosin dimers. Accordingly, the ATPase activity of phosphorylated gizzard myosin does not show activity depression at low ionic strength.  相似文献   

15.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

16.
Changes in myosin isozymes during development of chicken gizzard muscle   总被引:3,自引:0,他引:3  
The distribution of myosin isozymes in embryonic and adult chicken gizzard muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, there were three isozyme components in embryonic gizzard myosin, but only one isozyme in adult gizzard myosin. The mobility of the fastest migrating embryonic isozyme was similar to that of the adult isozyme. The three embryonic isozymes differ from each other in the light chain distribution. Two of them contain an embryo-specific myosin light chain, which is characterized by its molecular weight and isoelectric point, whereas the other embryonic myosin isozyme contained the same light chains as the adult myosin. The pattern of peptide fragments of embryonic heavy chain produced by digestion with alpha-chymotrypsin in the presence of SDS was not distinguishable from that of adult myosin heavy chain. Thus there are myosin isozymes specific to embryonic gizzard muscle which exhibit embryo-specific light chain compositions, but are similar to adult gizzard myosin in their heavy chain structure.  相似文献   

17.
The reaction intermediates formed by the two heads of smooth muscle myosin were studied. The amount of myosin-phosphate-ADP complex, MPADP, formed was measured from the Pi-burst size over a wide range of ATP concentrations. At low concentrations of ATP, the Pi-burst size was 0.5 mol/mol myosin head, and the apparent Kd value was about 0.15 microM. However, at high ATP concentrations, the Pi burst size increased from 0.5 to 0.75 mol/mol myosin head with an observed Kd value of 15 microM. The binding of nucleotides to gizzard myosin during the ATPase reaction was directly measured by a centrifugation method. Myosin bound 0.5 mol of nucleotides (ATP and ADP) with high affinity (Kd congruent to 1 microM) and 0.35 mol of nucleotides with low affinity (Kd = 24 microM) for ATP. These results indicate that gizzard myosin has two kinds of nucleotide binding sites, one of which forms MPADP with high affinity for ATP while the other forms MPADP and MATP with low affinity for ATP. We studied the correlation between the formation of MPADP and the dissociation of actomyosin. The amount of Pi-burst size was not affected by the existence of F-actin, and when 0.5 mol of ATP per mol of myosin head was added to actomyosin (1 mg/ml F-actin, 5 microM myosin at 0 degrees C) most (93%) of the added ATP was hydrolyzed in the Pi-burst phase. All gizzard actomyosin dissociated when 1 mol of ATP per mol myosin head was added to actomyosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Functional domains of chicken gizzard myosin light chain kinase   总被引:2,自引:0,他引:2  
The proteolytic susceptibility of chicken gizzard myosin light chain kinase, a calmodulin-dependent enzyme, has been utilized to define the relative location of the catalytic and regulatory domains of the enzyme. Myosin light chain kinase isolated from this source exhibits a Mr of 130,000 and is extremely sensitive to trypsin at 24 degrees C; however, the molecule is divided into susceptible and resistant domains such that proteolysis proceeds rapidly and at multiple sites in the sensitive regions even at 4 degrees C while the rest of the molecule remains relatively resistant to digestion. One of these sensitive areas is the calmodulin-binding domain. On the other hand, Staphylococcus aureus V8 protease digestion generates a calmodulin-binding fragment (Mr = 70,000) that retains Ca2+/calmodulin-dependent enzymatic activity and both of the phosphorylation sites recognized by cAMP-dependent protein kinase. In contrast, treatment with chymotrypsin produces a 95,000 Mr calmodulin-binding fragment that contains only the calmodulin-modulated phosphorylation site. Sequential proteolytic digestion studies demonstrated that the chymotryptic cleavage site responsible for the generation of this 95,000 Mr peptide is within 3,000 Mr of the V8 protease site which produces the 70,000 Mr fragment. Moreover, the non-calmodulin-modulated phosphorylation site must exist in this 3,000 Mr region. A calmodulin-Sepharose affinity adsorption protocol was developed for the digestion and used to isolate both the 70,000 and 95,000 Mr fragments for further study. Taken together, our results are compatible with a model for chicken gizzard myosin light chain kinase in which there is no overlap between the active site, the calmodulin-binding region, and the two sites phosphorylated by cAMP-dependent protein kinase with regard to their relative position in the primary sequence of the molecule.  相似文献   

19.
Aggregated and disaggregated forms of gizzard myosin rod and its fragments in various concentrations of NaCl (0-0.30 M) at various pH (7.4-8.6) were distinguished from each other by their permeability through a Sepharose 4B column. The rod existed in three forms, namely: large aggregates impermeable to the column, small aggregates eluted at the void volume of the column and a disaggregated monomer which penetrated the column. The relative proportions of the three forms varied depending on the salt concentration and pH. The monomeric rod was detected in NaCl solutions above 0.20 M and its relative proportion at 0.25 M NaCl was larger than those of the small and large aggregates. The small aggregates of the rod were predominant at below 0.05 M NaCl and, upon decrease in pH from 8.6 to 7.4, these small aggregates in NaCl solutions between 0.10 M and 0.15 M were replaced by the large aggregates. Light meromyosin, which corresponded to the C-terminal two-thirds of the rod, existed exclusively as large aggregates in NaCl solutions below 0.15 M; increase of NaCl concentration to above 0.20 M resulted in the formation of its monomer, instead of the large aggregates. In contrast to the rod, no small aggregated form of the light meromyosin was detected. Truncated light meromyosin which had lost a small segment from either the C-terminal or N-terminal of light meromyosin was eluted only as a monomer in any NaCl concentration at any pH. It may be deduced from the above results that a small segment in the light meromyosin is requisite for the assembly of both rod and light meromyosin in the NaCl solutions below 0.15 M and that the relative proportion of small and large aggregates of the rod is determined in a pH-dependent manner by the subfragment 2 segment, the N-terminal third of the rod.  相似文献   

20.
Treatment of phosphorylated chicken gizzard myosin which had incorporated 1.5 mol of phosphate per 4.7 x 10(5) g of protein with 1-fluoro-2,4-dinitrobenzene resulted in the modification of the heavy and light chains when 5.8 mol of the reagent were bound to myosin. Concurrently, the K+-ATPase activity was inhibited and the modified myosin possessed actin activated-ATPase activity. Thiolysis of nearly 2 mol of the dinitrophenyl group mainly from the heavy chains (and some light chains) of the modified myosin with 2-mercaptoethanol restored the K+-ATPase activity. Digestion of phosphorylated gizzard myosin with chymotrypsin or papain occurred to a lesser extent than a control myosin. Chymotryptic fragments of phosphorylated and dinitrophenylated myosin were formed at a faster rate than those of dinitrophenylated myosin alone suggesting that phosphorylation of the light chain of Mr 20,000 altered the susceptibility of the heavy chains of myosin to proteolysis. Phosphorylation of dinitrophenylated gizzard myosin which had incorporated 5.5 mol of 1-fluoro-2,4-dinitrobenzene per 4.7 x 10(5) g of protein was the same as that of a control myosin; this was also the case for the thiolyzed dinitrophenylated myosin. In the absence of calcium, phosphorylation of control and dinitrophenylated myosins decreased by 73% suggesting that the phosphorylation reaction was calcium dependent. Phosphorylation and dinitrophenylation induced conformational changes in the light chains of gizzard myosin that may be involved in maintaining the structure of the heavy chain region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号