首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stepwise two-photon excited fluorescence (TPEF) spectra of the photosynthetic antenna complexes PCP, CP47, CP29, and light-harvesting complex II (LHC II) were measured. TPEF emitted from higher excited states of chlorophyll (Chl) a and b was elicited via consecutive absorption of two photons in the Chl a/b Qy range induced by tunable 100-fs laser pulses. Global analyses of the TPEF line shapes with a model function for monomeric Chl a in a proteinaceous environment allow distinction between contributions from monomeric Chls a and b, strongly excitonically coupled Chls a, and Chl a/b heterodimers/-oligomers. The analyses indicate that the longest wavelength-absorbing Chl species in the Qy region of LHC II is a Chl a homodimer with additional contributions from adjacent Chl b. Likewise, in CP47 a spectral form at approximately 680 nm (that is, however, not the red-most species) is also due to strongly coupled Chls a. In contrast to LHC II, the red-most Chl subband of CP29 is due to a monomeric Chl a. The two Chls b in CP29 exhibit marked differences: a Chl b absorbing at approximately 650 nm is not excitonically coupled to other Chls. Based on this finding, the refractive index of its microenvironment can be determined to be 1.48. The second Chl b in CP29 (absorbing at approximately 640 nm) is strongly coupled to Chl a. Implications of the findings with respect to excitation energy transfer pathways and rates are discussed. Moreover, the results will be related to most recent structural analyses.  相似文献   

2.
Absorption and fluorescence spectra of chlorophyll a have been analyzed on the basis of an extended version of Kennard–Stepanov (KS) theory. It is proposed that at least one new electronic state lies just below the normal S1 – S0 transition (Qy), borrowing approximately 2–4% of its strength and contributing to the fluorescence in the tail. The KS anomalies leading to this hypothesis occur in a wide variety of cases, including chlorophyll a in solution and protein-bound chlorophyll a, suggesting that the phenomenon is an intrinsic property of the molecule. Natural candidates for the new state(s) are the second and third triplet states. The relationship of the fluorescence excitation spectrum to KS theory is investigated and applied to explain a red drop in yield.  相似文献   

3.
4.
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.  相似文献   

5.
The fluorescence from a purified, aggregate form of the light-harvesting chlorophyll a/b protein has a lifetime of 1.2 +/- 0.5 ns at low excitation intensity, but the lifetime decreases significantly when the intensity of the 20-ps, 530-nm excitation pulse is increased above about 10(16) photons/cm2. A solubilized, monomeric form of the protein, on the other hand, has a fluorescence lifetime of 3.1 +/- 0.3 ns independent of excitation intensity from 10(14)-10(18) photons/cm2/pulse. We interpret the lifetime shortening in the aggregates and the lack of shortening in monomers in terms of exciton annihilation, facilitated in the aggregate by the larger population of interacting chlorophylls.  相似文献   

6.
7.
The light-harvesting chlorophyll a/b complex (LHCIIb) spontaneously assembles from its pigment and protein components in detergent solution. The formation of functional LHCIIb can be detected in time-resolved experiments by monitoring the establishment of excitation energy transfer from protein-bound chlorophyll b to chlorophyll a. To detect the possible initial steps of chlorophyll binding that may not yet give rise to chlorophyll b-to-a energy transfer, we have monitored LHCIIb assembly by measuring excitation energy transfer from a fluorescent dye, covalently bound to the protein, to the chlorophylls. In order to exclude interference of the dye with protein folding or pigment binding, the experiments were repeated with the dye bound to four different positions in the protein. Initial chlorophyll binding occurs at roughly the same rate as the establishment of chlorophyll b-to-a energy transfer, in the range of 10 s. However, under limiting chlorophyll concentrations, the binding of chlorophyll a clearly precedes that of chlorophyll b. The complex containing the apoprotein, carotenoids, and chlorophyll a but no chlorophyll b is biochemically unstable and therefore cannot be isolated. However, chlorophyll a binding into this weak complex is specific, as it does not occur with a C-terminal deletion mutant of Lhcb1 which still contains most chlorophyll-ligating amino acids but is unable to fold and assemble into functional LHCIIb. As a scenario for LHCIIb assembly in the thylakoid, we propose the initial formation of a labile Lhcb1-chlorophyll a-carotenoid complex that then becomes stabilized by the binding (or formation in situ) of chlorophyll b.  相似文献   

8.
The structure of thin three-dimensional crystals of the light-harvesting chlorophyll a/b protein complex, an integral membrane protein from the photosynthetic membrane of chloroplasts, has been determined at 7 A (1 A = 0.1 nm) resolution in projection. The structure analysis was carried out by image processing of low-dose electron micrographs, and electron diffraction of thin three-dimensional crystals preserved in tannin. The three-dimensional crystals appeared to be stacks of two-dimensional crystals having p321 symmetry. Results of the image analysis indicated that the crystals were disordered, due to random translational displacement of stacked layers. This was established by a translation search routine that used the low-resolution projection of a single layer as a reference. The reference map was derived from the symmetrized average of two images that showed features consistent with the projected structure of negatively stained two-dimensional crystals. The phase shift resulting from the displacement of each layer was corrected. Phase shifts were then refined by minimizing the phase residual, bringing all layers to the same phase origin. Refined phases from different images were in agreement and reliable to 7 A resolution. A projection map was generated from the averaged phases and electron diffraction amplitudes. The map showed that the complex was a trimer composed of three protein monomers related by 3-fold symmetry. The projected density within the protein monomer suggested membrane-spanning alpha-helices roughly perpendicular to the crystal plane. The density in the centre and on the periphery of the trimeric complex was lower than that of the protein, indicating that this region contained low-density matter, such as lipids and antenna chlorophylls.  相似文献   

9.
《The Journal of cell biology》1987,105(6):2641-2648
A processing activity has been identified in higher plant chloroplasts that cleaves the precursor of the light-harvesting chlorophyll a/b- binding protein (LHCP). A wheat LHCP gene previously characterized (Lamppa, G.K., G. Morelli, and N.-H. Chua, 1985. Mol. Cell Biol. 5:1370- 1378) was used to synthesize RNA and subsequently the labeled precursor polypeptide in vitro. Incubation of the LHCP precursors with a soluble extract from lysed chloroplasts, after removal of the thylakoids and membrane vesicles, resulted in the release of a single 25-kD peptide. In contrast, when the LHCP precursors were used in an import reaction with intact pea or wheat chloroplasts, two forms (25 and 26 kD) of mature LHCP were found. The peptide released by the processing activity in the organelle-free assay comigrated with the lower molecular mass form of mature LHCP produced during import. Properties of the processing activity suggest that it is an endopeptidase. Chloroplasts from both pea and wheat, two divergent higher plants, contain the processing enzyme, suggesting its physiological importance in LHCP assembly into the thylakoids. We discuss the implications of LHCP precursor processing by a soluble enzyme that may be in the stromal compartment.  相似文献   

10.
Photosynthesis Research - In the last two decades, Magic Angle Spinning (MAS) NMR has created its own niche in studies involving photosynthetic membrane protein complexes, owing to its ability to...  相似文献   

11.
The light-harvesting chlorophyll a/b complex (LHC II) and four photosystem II (PS II) core proteins (8.3, 32, 34 and 44 kDa) become phosphorylated in response to reduction of the intersystem electron transport chain of green plant chloroplasts. Previous studies indicated that reduction of the plastoquinone (PQ) pool is the key event in kinase activation. However, we show here that, unlike PS II proteins, LHC II is phosphorylated only when the cytochrome b6f complex is active. Two lines of evidence support this conclusion. (1) 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the 2,4-dinitrophenyl ether of iodonitrothymol (DNP-INT), which are known to block electron flow into the cytochrome complex, selectively inhibit LHC II phosphorylation in spinach thylakoids. (2) The hcf6 mutant of maize, which contains PQ but lacks the cytochrome b6f complex, phosphorylates the four PS II proteins but fails to phosphorylate LHC II in vivo or in vitro.  相似文献   

12.
13.
The excited states of the chlorophyll 6-mer in the photosystem II (PSII) reaction center (RC) were investigated theoretically using ab initio quantum chemical calculations, and the results are compared with those of the bacterial reaction center (bRC). A significant difference in the peak at the lowest energy in the absorption spectra arises from the structural asymmetry of the special pair (SP). The origin can be traced back to the structural difference in the CD helix. The low-lying excited states are characterized as a linear combination of the excited states of the chlorophyll monomers, which verifies the applicability of exciton theory. Analysis of the molecular interactions clearly explains the cause of the constructive/destructive interferences in the state transition moment. The protein electrostatic potential (ESP) decreases the energy of the charge-transfer (Chl(D1)→Pheo(D1)) state. The ESP also localizes the HOMO distribution to the P(D1) moiety and increases the ionization potential.  相似文献   

14.
15.
Model ecosystems were grown in 12 sunlit, climate-controlled chambers to gain insight into the effects of elevated (+3°C) air temperature (Tair) on temperate grasslands. In this study, the hypothesis of delayed senescence in response to elevated Tair was tested for Rumex acetosa L. and Plantago lanceolata L. During the autumn of the first treatment year, frequent measurements were made of leaf chlorophyll a (Chl a ) fluorescence transients. Chl fluorescence images of individual leaves as well as digital colour images of these ecosystems were captured. Chl fluorescence variables, such as the maximum quantum yield of primary photochemistry (Fv/Fm), indicated a decreasing efficiency with time. Despite no treatment effect on Fv/Fm, other variables derived from the Chl fluorescence transients showed a strong trend towards a positive effect of a 3°C temperature increase on the photosynthetic performance of R. acetosa and P. lanceolata in the first year. After mid-September, the initial positive treatment effect disappeared for R. acetosa , strongly suggesting that leaf lifespan of this species was shortened by higher Tair. One possible explanation is more intense drought stress in the elevated compared to the ambient temperature treatments. Second-year measurements were possibly too limited in time to confirm this trend. These results show that temperate grassland species may take advantage of a future increase in Tair during autumn. This will ultimately depend on the species' degree of acclimation to a temperature change and on the resistance to drought stress.  相似文献   

16.
The major light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb) play important roles in energy balance of thylakoid membrane. They harvest solar energy, transfer the energy to the reaction center under normal light condition and dissipate excess excitation energy under strong light condition. Many bamboo species could grow very fast even under extremely changing light conditions. In order to explain whether LHCIIb in bamboo contributes to this specific characteristic, the spectroscopic features, the capacity of forming homotrimers and structural stabilities of different isoforms (Lhcb1-3) were investigated. The apoproteins of the three isoforms of LHCIIb in bamboo are overexpressed in vitro and successfully refolded with thylakoid pigments. The sequences of Lhcb1 and Lhcb2 are similar and they are capable of forming homotrimer, while Lhcb3 lacks 10 residues in the N terminus and can not form the homotrimeric structure. The pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different reconstituted Lhcbs reveal that Lhcb3 differs strongly from Lhcb1 and Lhcb2. Lhcb3 possesses the lowest Qy transition energy and the highest thermostability. Lhcb2 is the most stable monomer under strong illumination among all the isoforms. These results suggest that in spite of small differences, different Lhcb isoforms in bamboo possess similar characteristics as those in other higher plants.  相似文献   

17.
We investigated the diurnal fluctuation in the composition of the light harvesting chlorophyll a/b antenna of photosystem II in young wheat (Triticum aestivum) leaves grown under periodic day/night irradiation. By means of gel electrophoresis of the polypeptides of thylakoid membranes, we determined the amount of 25 kDa and 27 kDa polypeptides, which are the main components of the peripheral and inner antenna subpopulations, respectively. Our data show a preferential fluctuation in the amount of the 25 kDa protein relative to the 27 kDa polypeptide, in parallel to the fluctuation in the amount of chlorophyll a/b antenna of photosystem II, which suggests that the peripheral antenna plays a role in the diurnal adjustment of the antenna size.  相似文献   

18.
19.
With the aid of measurements of the fluorescence yield, the efficiency of the various deexcitation mechanisms of an exciton in the light-harvesting system has been determined. For this purpose, the fluorescence of dark-adapted as well as of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated and preilluminated leaves of Zea mays L. was excited by single ultrashort laser pulses of different energies. The experimental results have served for the fitting of solutions of rate equations, which describe the deexcitation by linear relaxation processes like fluorescence and radiationless transitions, by annihiation of excitons, and by traps both in the ground state and in an excited state. We have obtained the following results: a ratio of antenna chlorophyll molecules to Photosystem II traps of 600:1, an annihilation constant γ = 2·10?8 cm3·s?1, a mean trapping time of t?=0.5 ns, a trapping probability for traps in the ground state of 2·10?8 cm3·s?1, and 6·10?9 cm3·s?1 for traps in an excited state.  相似文献   

20.
Picosecond time-resolved fluorescence spectroscopy has been used to investigate the fluorescence emission from wild-type barley chloroplasts and from chloroplasts of the barley mutant, chlorina f-2, which lacks the light-harvesting chlorophyll a/b-protein complex. Cation-controlled regulation of the distribution of excitation energy was studied in isolated chloroplasts at the Fo and Fm levels. It was found that: (a) The fluorescence decay curves were distinctly non-exponential, even at low excitation intensities (less than 2 x 10(14) photons . cm(-2). (b) The fluorescence decay curves could, however, be described by a dual exponential decay law. The wild-type barley chloroplasts gave a short-lived fluorescence component of approximately 140 ps and a long-lived component of 600 ps (Fo) or 1300 ps (Fm) in the presence of Mg2+; in comparison, the mutant barley yielded a short-lived fluorescence component of approx. 50 ps and a long-lived component of 194 ps (Fo) and 424 ps (Fm). (c) The absence of the light-harvesting chlorophyll a/b-protein complex in the mutant results in a low fluorescence quantum yield which is unaffected by the cation composition of the medium. (d) The fluorescence yield changes seen in steady-state experiments on closing Photosystem II reaction centres (Fm/Fo) or on the addition of MgCl2 (+Mg2+/-Mg2+) were in overall agreement with those calculated from the time-resolved fluorescence measurements. The results suggest that the short-lived fluorescence component is partly attributable to the chlorophyll a antenna of Photosystem I, and, in part, to those light-harvesting-Photosystem II pigment combinations which are strongly coupled to the Photosystem I antenna chlorophyll. The long-lived fluorescence component can be ascribed to the light-harvesting-Photosystem II pigment combinations not coupled with the antenna of Photosystem I. In the case of the mutant, the two components appear to be the separate emissions from the Photosystem I and Photosystem II antenna chlorophylls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号