首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Stepwise two-photon excited fluorescence (TPEF) spectra of the photosynthetic antenna complexes PCP, CP47, CP29, and light-harvesting complex II (LHC II) were measured. TPEF emitted from higher excited states of chlorophyll (Chl) a and b was elicited via consecutive absorption of two photons in the Chl a/b Qy range induced by tunable 100-fs laser pulses. Global analyses of the TPEF line shapes with a model function for monomeric Chl a in a proteinaceous environment allow distinction between contributions from monomeric Chls a and b, strongly excitonically coupled Chls a, and Chl a/b heterodimers/-oligomers. The analyses indicate that the longest wavelength-absorbing Chl species in the Qy region of LHC II is a Chl a homodimer with additional contributions from adjacent Chl b. Likewise, in CP47 a spectral form at approximately 680 nm (that is, however, not the red-most species) is also due to strongly coupled Chls a. In contrast to LHC II, the red-most Chl subband of CP29 is due to a monomeric Chl a. The two Chls b in CP29 exhibit marked differences: a Chl b absorbing at approximately 650 nm is not excitonically coupled to other Chls. Based on this finding, the refractive index of its microenvironment can be determined to be 1.48. The second Chl b in CP29 (absorbing at approximately 640 nm) is strongly coupled to Chl a. Implications of the findings with respect to excitation energy transfer pathways and rates are discussed. Moreover, the results will be related to most recent structural analyses.  相似文献   

2.
CP43 is a chlorophyll-protein complex that funnels excitation energy from the main light-harvesting system of photosystem II to the photochemical reaction center. We purified CP43 from spinach photosystem II membranes in the presence of the nonionic detergent n-dodecyl-beta,D-maltoside and recorded its spectroscopic properties at various temperatures between 4 and 293 K by a number of polarized absorption and fluorescence techniques, fluorescence line narrowing, and Stark spectroscopy. The results indicate two "red" states in the Q(y) absorption region of the chlorophylls. The first peaks at 682.5 nm at 4 K, has an extremely narrow bandwidth with a full width at half-maximum of approximately 2.7 nm (58 cm(-1)) at 4 K, and has the oscillator strength of a single chlorophyll. The second peaks at approximately 679 nm, has a much broader bandshape, is caused by several excitonically interacting chlorophylls, and is responsible for all 4 K absorption at wavelengths longer than 685 nm. The Stark spectrum of CP43 resembles the first derivative of the absorption spectrum and has an exceptionally small overall size, which we attribute to opposing orientations of the monomer dipole moments of the excitonically coupled pigments.  相似文献   

3.
Twenty-three chlorina (clo) mutants from the barley mutant collection of the Carlsberg Laboratory, Copenhagen, were tested for the presence of the four light-harvesting chlorophyll (Chl) a/b-binding proteins (LHC) of Photosystem I (Lhca1-4) and the PS II antenna proteins Lhcb1-3 (LHC II), Lhcb4-6 (CP29, CP26, CP24) and PsbS (CP22) using monospecific and monoclonal antibodies. Mutants allelic to barley mutant clo-f2, impaired in Chl b synthesis, provided evidence that Lhca4, Lhcb1 and Lhcb6 are unstable in the absence of Chl b, and the accumulation of Lhcb2, Lhcb3 and Lhcb4 is also impaired. Mutants at the locus chlorina-a (clo-a117, clo-a126 and clo-a134) lack or have only trace amounts of Lhca1, Lhca4, Lhcb1 and Lhcb3, whereas a mutant at the locus chlorina-b (clo-b125) had reduced amounts of all Lhca proteins. These two mutations could have an effect in protein import or assembly. Evidence is presented that Lhcb5 is the innermost LHC protein of PS II, and that Lhca1 and Lhca4, which have been supposed to be intimately associated in the LHCI-730 complex, can accumulate independently of each other. 77 K fluorescence emission spectra taken from leaves of clo-f2 101, clo-a126 and clo-b125 indicate that chlorophyll(s) emitting at 742 nm are coupled to the presence of Lhca4 that is bound to the reaction centre, and those emitting around 730 nm are located on Lhca1.  相似文献   

4.
Chloroplast proteins were phosphorylated under two test conditions: white light irradiance alone and white light irradiance with the addition of glucose and glucose oxidase, used to produce an anaerobic medium. The interaction of phospho-LHC II with Photosystem 1 (PS 1) was studied for two types of PS I preparation. Changes in the chlorophyll a/b ratio and the ratio of 650 and 680 nm band intensities (E650/E680) in fluorescence excitation spectra were used in calculating the phospho-LHC II portion which became associated with PS 1. It is shown that the associated portion of phospho-LHC II varies for each of the PS 1 preparations and phosphorylation procedures. Possible conclusions as regards the transfer of various sets of LHC II subpopulations under different phosphorylation procedures and the differences of interaction with PS 1 are discussed.Abbreviations PS 1 Photosystem 1 - PS 2 Photosystem 2 - LHC II light-harvesting chlorophyll a/b protein complex II - Chl chlorophyll - fluorescence quantum yield - f life time of fluorescence at =685 nm - F735 fluorescence band with a maximum at 735 nm - F685 fluorescence band with a maximum at 685 nm - E650/E680 ratio of amplitudes in excitation fluorescence spectrum at 650 and 680 nm  相似文献   

5.
Pigment binding of photosystem I light-harvesting proteins   总被引:2,自引:0,他引:2  
Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in their recombinant form; their analysis allowed further dissection of pigment binding by individual LHCI proteins and analysis of pigment requirements for LHCI formation. By these different approaches a correlation between the requirement of a single chlorophyll species for LHC formation and the chlorophyll a/b ratio of LHCs could be detected, and indications regarding occupation of carotenoid-binding sites were obtained. Additionally the reconstitution approach allowed assignment of spectral features observed in native LHCI-680 to its components Lhca2 and Lhca3. It is suggested that excitation energy migrates from chlorophyll(s) fluorescing at 680 (Lhca3) via those fluorescing at 686/702 nm (Lhca2) or 720 nm (Lhca3) to the photosystem I core chlorophylls.  相似文献   

6.
CP29 (the lhcb4 gene product), a minor photosystem II antenna complex, binds six chlorophyll (Chl) a, two Chl b, and two to three xanthophyll molecules. The Chl a/b Q(y) absorption band substructure of CP29 (purified from spinach) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. A set of NLPF spectra was obtained at 11 probe wavelengths. Seven probe wavelengths were located in the Q(y) spectral region (between 630 and 690 nm) and four in the Soret band (between 450 and 485 nm). Evaluation of the experimental data within the framework of global analysis leads to the following conclusions: (i) The dominant Chl a absorption (with a maximum at 674 nm) splits into (at least) three subbands (centered at 660, 670, and 681.5 nm). (ii) In the Chl b region two subbands can be identified with maxima located at 640 and 646 nm. (iii) The lowest energy Q(y) transition (peaking at 681.5 nm) is assigned to a Chl a which only weakly interacts with other Chl aor b molecules by incoherent F?rster-type excitation energy transfer. (iv) Pronounced excitonic interaction exists between certain Chl a and Chl b molecules, which most likely form a Chl a/b heterodimer. The subbands centered at 640 and 670 nm constitute a strongly coupled Chl a/b pair. The findings of the study indicate that the currently favored view of spectral heterogeneity in CP29 being due essentially to pigment-protein interactions has to be revised.  相似文献   

7.
Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.  相似文献   

8.
Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5-1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b <--> Chl b energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b <--> Chl b and fast Chl b --> Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A(3) and B(3). For LHCII, the observed rates can best be understood if the same pair, A(3) and B(3), is involved in both fast Chl b <--> Chl b and fast Chl a <--> Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophyll binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.  相似文献   

9.
Chlorophyll-protein complexes of barley photosystem I   总被引:11,自引:0,他引:11  
Photosystem I (PSI) preparations with a chlorophyll a/b ratio of 6.0 were isolated from barley thylakoids using two different methods. The high-molecular-mass complex (CP1a) which is resolved by non-denaturing gel electrophoresis had the same properties as a PSI preparation (PSI-200) isolated by Triton X-100 solubilisation of thylakoids followed by sucrose gradient ultracentrifugation. This material had a chlorophyll:P700 ratio of 208:1 and was composed of three different chlorophyll-protein complexes which could be separated from each other by solubilising the PSI preparation in dodecyl maltoside followed by sucrose gradient ultracentrifugation. Approximately half of the chlorophyll, including all the chlorophyll b, was located in two antenna complexes designated LHCI-680 and LHCI-730, which were identified by their characteristic low-temperature fluorescence emission spectra. The rest of the chlorophyll a was associated with the PSI reaction centre, P700 Chla-P1, which fluoresced at 720 nm. Each chlorophyll-protein complex had a unique polypeptide composition and characteristic circular dichroic and absorption spectra. The use of dodecyl maltoside instead of dodecyl sulphate resulted in a less denatured form of LHCI-680, which fluoresced at 690 nm at 77 K. One of the sucrose gradient fractions contained a complex consisting of only LHCI-730 and P700 Chla-P1 which fluoresced at 731 nm, indicating that LHCI-730 is structurally associated with P700 Chla-P1 and quenches its fluorescence. Approximately three-quarters of the light-harvesting antenna chlorophyll was in LHCI-730, but only about one-quarter of the normal complement of LHCI-730 was required to quench the reaction centre. By reducing the amount of Triton relative to the chlorophyll concentration, a PSI preparation (chlorophyll a/b ratio of 3.5) with a chlorophyll:P700 ratio of 300:1 was isolated. It contained no photosystem II, but a significant amount of LHCII which was functionally connected to the PSI reaction centre. Reconstitution studies demonstrated that excitation energy transfer from LHCII to PSI requires the presence of LHCI-680, and we propose that, in PSI, the following linear excitation energy transfer sequence occurs: LHCII----LHCI-680----LHCI-730----P700 Chla-P1.  相似文献   

10.
The Chl-protein complexes of three maize (Zea mays L.) mutants and one barley (Hordeum vulgare L.) mutant were analyzed using low temperature Chl fluorescence emissions spectroscopy and LDS-polyacrylamide gel electrophoresis. The maize mutants hcf-3, hcf-19, and hcf-114 all exhibited a high Chl fluorescence (hcf) phenotype indicating a disruption of the energy transfer within the photosynthetic apparatus. The mutations in each of these maize mutants affects Photosystem II. The barley mutant analyzed was the well characterized Chl b-less mutant chlorina-f2, which did not exhibit the hcf phenotype. Chlorina-f2 was used because no complete Chl b-less mutant of maize is available. Analysis of hcf-3, hcf-19, and hcf-114 revealed that in the absence of CP43, LHC II can still transfer excitation energy to CP47. These results suggest that in mutant membranes LHC II can interact with CP47 as well as CP43. This functional interaction of LHC II with CP47 may only occur in the absence of CP43, however, it is possible that LHC II is positioned in the thylakoid membranes in a manner which allows association with both CP43 and CP47.Abbreviations hcf high chlorophyll fluorescence - LDS lithium dodecyl sulfate - LHC II light-harvesting complex of Photosystem II - LHC I light-harvesting complex of Photosystem I - CPIa chlorophyll-protein complex consisting of LHC I and the PS I core complex - CPI chlorophyll-protein complex consisting of the PS I core complex - CP47 47 kDa chlorophyll-protein of the Photosystem II core - CP43 43 kDa chlorophyll-protein of the Photosystem II core - CP29 29 kDa chlorophyll-protein of Photosystem II - CP26 26 kDa chlorophyll-protein of Photosystem II - CP24 24 kDa chlorophyll-protein of Photosystem II - fp free pigments  相似文献   

11.
A relative decrease of the high temperature part (above 60°C) of the chlorophyll fluorescence temperature curve during 3 h to 10 h greening period of barley (Hordeum vulgare L.) leaves was found to be concomitant to a decrease of Chl alb ratio and to a gradual increase of LHCP/core ratio found by electrophoresis and the ratio of granal to total length of thylakoid membranes. It is suggested that the high temperature part of the fluorescence temperature curve depends inversely on the relative amount of LHC II in thylakoid membranes.Abbreviations Chl a(b) chlorophyll a(b) - CPa chlorophyll a protein complex of PS II - CP1 P700 chlorophyll a protein complex of PS I - FP free pigments - FTC fluorescence temperature curve - F(T30) fluorescence intensity at 30°C - LHC II light harvesting complex II - LHCP light harvesting chlorophyll protein - LHCP3 (LHCPm) monomeric form of LHC II - LHCPo oligomeric form of LHC II complex - M1 first maximum of FTC - M2 second maximum (region) of FTC - PAA polyacrylamide - PAR photosynthetically active radiation - PS I(II) Photosystem I(II) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

12.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

13.
Occurrence of excitonic interactions in light-harvesting complex II (LHC II) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. NLPF spectra were obtained upon probing in the chlorophyll (Chl) a/b Soret region and pumping in the Qy region. The lowest energy Chl a absorbing at 678 nm is strongly excitonically coupled to Chl b.  相似文献   

14.
Chlorophyll-proteins of the photosystem II antenna system   总被引:3,自引:0,他引:3  
The chlorophyll-protein complexes of purified maize photosystem II membranes were separated by a new mild gel electrophoresis system under conditions which maintained all of the major chlorophyll a/b-protein complex (LHCII) in the oligomeric form. This enabled the resolution of three chlorophyll a/b-proteins in the 26-31-kDa region which are normally obscured by monomeric LHCII. All chlorophyll a/b-proteins had unique polypeptide compositions and characteristic spectral properties. One of them (CP26) has not previously been described, and another (CP24) appeared to be identical to the connecting antenna of photosystem I (LHCI-680). Both CP24 and CP29 from maize had at least one epitope in common with the light-harvesting antennae of photosystem I, as shown by cross-reactivity with a monoclonal antibody raised against LHCI from barley thylakoids. A complex designated Chla.P2, which was capable of electron transport from diphenylcarbazide to 2,6-dichlorophenolindophenol, was isolated by nondenaturing gel electrophoresis. It lacked CP43, which therefore can be excluded as an essential component of the photosystem II reaction center core. Fractionation of octyl glucoside-solubilized photosystem II membranes in the presence and absence of Mg2+ enabled the isolation of the Chla . P2 complex and revealed the existence of a light-harvesting complex consisting of CP29, CP26, and CP24. This complex and the major light-harvesting system (LHCII) are postulated to transfer excitation energy independently to the photosystem II reaction center via CP43.  相似文献   

15.
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis. The fluorescence of variable yield at 750 nm at -196 degrees C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at -196 degrees C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FM-FO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex. Fluoresence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, alpha, which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at -196 degrees C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex. The wavelength dependence of alpha was determined from fluorescence measurements at 692 and 750 nm at -196 degrees C. Alpha is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where alpha shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, alpha increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   

16.
假根羽藻外周天线捕光色素蛋白复合物(L ight-harvesting Comp lex II,LHC II)在不同聚集态的情况下,它所包含色素分子间的能量传递是不同的。采用荧光发射光谱和激发光谱技术对不同聚集态(单体、三聚体和寡聚体)的LHC II进行研究,发现三聚体中色素分子间的能量传递效率比较高,单体要小一些。520 nm激发下,类胡萝卜素分子向叶绿素a分子的能量传递效率:三聚体约为64%、单体约为56%;650 nm激发下,叶绿素b分子向叶绿素a分子的能量传递效率:三聚体约为89%、单体约为78%。寡聚体的能量传递要复杂些,从光谱分析出它包含两种不同吸收光谱特性的叶绿素b分子,吸收峰分别为480 nm和468 nm,其中蓝区吸收峰为480 nm的叶绿素b分子向发射685 nm荧光的叶绿素a分子的能量传递效率要小于75%。  相似文献   

17.
Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690?nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S2 and hot S1 states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.  相似文献   

18.
The effects of low temperature on the relative contributions of the reaction center and the antenna activities to photosystem II (PSII) electron transport were estimated by chlorophyll fluorescence. The inhibition of PSII photochemistry resulted from photo-damage to the reaction center and/or a reduced probability of excitation energy trapping by the reaction center. Although chill treatment did not modify the proportion of the dimeric to monomeric PSII, it destabilized its main light-harvesting complex. Full protection of the reaction center was achieved only in the presence of the phosphorylated PSII subunit, CP29. In a nonphosphorylating genotype the chill treatment led to photoinhibitory damage. The phosphorylation of CP29 modified neither its binding to the PSII core nor its pigment content. Phosphorylated CP29 was isolated by flat-bed isoelectric focusing. Its spectral characteristics indicated a depletion of the chlorophyll spectral forms with the highest excitation transfer efficiency to the reaction center. It is suggested that phosphorylated CP29 performs its regulatory function by an yet undescribed mechanism based on a shift of the equilibrium for the excitation energy toward the antenna.  相似文献   

19.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

20.
The 77 K picosecond fluorescence of intact Chlamydomonas reinhardtii exhibits a 680-nm band (F680) that can be identified with light-harvesting chlorophyll. Analysis of the time and spectral dependence of F680 reveal a forward transfer rate of 1/(15 ps) from this 680-nm species to photosystem II. The possibility of transfer through LHC I, the light-harvesting complex closely associated with photosystem I with a transfer time of 60 to 100 ps, is indicated by analysis of similar data in the 700–720 nm region. Simple kinetic models that account for the time dependence of the emissions F707, F703 and F715 are proposed.Based in part on a thesis submitted in partial fulfillment of the requirements for the Ph.D. Degree, University of Rochester (SL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号