首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extremely low-frequency (ELF) magnetic fields have previously been shown to affect conformation of chromatin, cell proliferation, and calcium metabolism. Possible mutagenic and carcinogenic effects of ELF have also been discussed and tested. In this study, intrachromosomal recombination in the hprt gene after exposure to ELF magnetic field was investigated using the SPD8 recombination assay. SPD8 cells, derived from V79 Chinese hamster cells were exposed to ELF at a specific combination of static and ELF magnetic fields, that has been proven to have effects on chromatin conformation in several cell types. The genotoxic agent camptothecin (CPT) was used either as a positive control or simultaneously with ELF. We also analysed the effect of ELF and CPT on chromatin conformation with the anomalous viscosity time dependence (AVTD) technique, cell growth kinetics, and cell survival with clonogenic assay. DNA fragmentation was analysed by pulsed field gel electrophoresis (PFGE). ELF did not induce recombination alone, neither did ELF modify the recombinogenic effect of CPT. Although, there was no effect on cell survival in response to ELF exposure, inhibition of cell growth was observed. On the other hand, ELF exposure partly counteracted the growth inhibition seen with CPT. The data suggest that ELF exposure may stimulate or inhibit cell growth depending on the state of the cells. Although, ELF did not induce recombination, a weak but statistically significant DNA fragmentation comparable with CPT-induced fragmentation was observed with PFGE 48h after exposure to ELF.  相似文献   

2.
The effects of magnetic fields of extremely low frequency (ELF, 21 μT r.m.s.) on cells of different Escherichia coli K12 strains and human lymphocytes were studied by the method of anomalous viscosity time dependence (AVTD). Within the frequency range of 6–24 Hz, two resonance-type frequency windows with maximal effects at 9 Hz and 16 Hz were observed in response of GE499 strain. Only one frequency window with maximum effect at 8.5 Hz was found for GE500 cells. These data along with previously obtained for two other E. coli strains, AB1157 and EMG2, indicate that frequency windows are dependent on genotype of cells exposed to ELF. Resonance-type effects of ELF were also observed in human lymphocytes in frequency windows around 8 and 58 Hz. These ELF effects differed significantly between studied donors, but were well reproducible in independent experiments with lymphocytes from the same donors. The frequency windows in response of E. coli strains and human lymphocytes to ELF significantly overlapped suggesting that the same targets may be involved in this response. We compared the frequency windows with predictions based on the ion cyclotron resonance (ICR) model and the magnetic parametric resonance model. These models predicted effects of ELF magnetic fields at the ‘cyclotron’ frequencies of some ions of biological relevance. According to the ICR model, ELF effects should be also observed at harmonics of cyclotron frequencies and, contrary, parametric resonance model predicted effects at subharmonics. While we observed coincidence of each experimental resonance frequency with predictions of one of these two models, all experimentally defined effective frequency windows were in good agreement with relatively narrow frequency ranges of both harmonics and subharmonics for natural isotopes of Na, K, Ca, Mg, and Zn ions. The experimental data support idea that both harmonics and subharmonics of several biologically important ions are involved in frequency-dependent ELF effects in cells of different types.  相似文献   

3.
The effects of magnetic fields of extremely low frequency (ELF, 21 microT r.m.s.) on cells of different Escherichia coli K12 strains and human lymphocytes were studied by the method of anomalous viscosity time dependence (AVTD). Within the frequency range of 6-24 Hz, two resonance-type frequency windows with maximal effects at 9 Hz and 16 Hz were observed in response of GE499 strain. Only one frequency window with maximum effect at 8.5 Hz was found for GE500 cells. These data along with previously obtained for two other E. coli strains, AB1157 and EMG2, indicate that frequency windows are dependent on genotype of cells exposed to ELF. Resonance-type effects of ELF were also observed in human lymphocytes in frequency windows around 8 and 58 Hz. These ELF effects differed significantly between studied donors, but were well reproducible in independent experiments with lymphocytes from the same donors. The frequency windows in response of E. coli strains and human lymphocytes to ELF significantly overlapped suggesting that the same targets may be involved in this response. We compared the frequency windows with predictions based on the ion cyclotron resonance (ICR) model and the magnetic parametric resonance model. These models predicted effects of ELF magnetic fields at the 'cyclotron' frequencies of some ions of biological relevance. According to the ICR model, ELF effects should be also observed at harmonics of cyclotron frequencies and, contrary, parametric resonance model predicted effects at subharmonics. While we observed coincidence of each experimental resonance frequency with predictions of one of these two models, all experimentally defined effective frequency windows were in good agreement with relatively narrow frequency ranges of both harmonics and subharmonics for natural isotopes of Na, K, Ca, Mg, and Zn ions. The experimental data support idea that both harmonics and subharmonics of several biologically important ions are involved in frequency-dependent ELF effects in cells of different types.  相似文献   

4.
Extremely low frequency (ELF) magnetic fields have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF have also been discussed and tested. In this study, we analyzed the effect of ELF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time dependence (AVTD) technique. Possible genotoxic ELF effects at the specific combination of static and ELF magnetic fields, that has been proven to have effects on chromatin conformation, were investigated by clonogenic assay, cell growth kinetics, and analysis of SOS-response using inducible recA-lacZ fusion and the β-galactosidase assay. Genotoxic agent nalidixic acid (NAL) was used as positive control and in combination with ELF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced cytotoxic effect. In contrast to NAL, ELF increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on frequency within the frequency range of 7-11Hz. While NAL induced SOS response, ELF exposure did not induce the recA-lacZ fusion. Exposure to ELF did not modify the genotoxic effects of NAL either. All together, the data show that ELF, under specific conditions of exposure, acted as nontoxic but cell growth stimulating agent.  相似文献   

5.
The effects of weak magnetic fields of extremely low frequency (ELF) on E. coli K12 AB1157 cells were studied by the method of anomalous viscosity time dependencies (AVTD). E. coli cells at different densities within a range of 5 × 105–109 cell/ml were exposed to ELF (sinusoidal, 30 μT peak, 15 min) at a frequency of 9 Hz. A transient effect with maximum 40–120 min after exposure was observed. Kinetics of the per-cell-normalised ELF effects fitted well to a Gaussian distribution for all densities during exposure. A maximum value of these kinetics and a time for this maximum were strongly dependent on the cell density during exposure. These data suggest a cell-to-cell interaction during response to ELF. Both dependencies had three regions close to a plateau within the ranges of 3 × 105 − 2 × 107 cell/ml, 4 × 107 − 2 × 108 cell/ml and 4 × 108–109 cell/ml and two rather sharp transitions between these plateaus. The effect reached a maximum value at a density of 4 × 108 cell/ml. Practically no effect was observed at the lowest density of 3 × 105 cell/ml. The data suggested that the ELF effect was mainly caused by a secondary rather than a primary reaction. The filtrates from exposed cells neither induced significant AVTD changes in unexposed cells nor increased the ELF effect when were added to cells before exposure. The data did not provide evidence for significant contribution of stable chemical messengers, but some unstable compounds such as radicals could be involved in the mechanism of cell-to-cell interaction during response to ELF. The results obtained were also in accordance with a model based on an re-emission of secondary photons during resonance fluorescence. Bioelectromagnetics 19:300–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

7.
用细胞分析成像光盘记录系统测量了3T3细胞在某些ELF磁场和温度条件下生长周期的变化.实验结果表明,只有某些频率的ELF磁场才对细胞生长产生影响,磁场对细胞生长的影响还与培养细胞的生化环境有关.温度和ELF磁场都能影响细胞的生长.但二者的机理是不一样的,当撤除ELF磁场后,细胞在短时间内(2天以上)继续保持着ELF场对其生长的影响.而细胞生长周期能在短时间内(2天以内)随着温度的变化而变化.温度引起的细胞生长的变化可能与细胞内的各种生长因子、生物离子的活性有关.ELF磁场引起的细胞生长的变化可能与ELF磁场对细胞膜的影响有关,与细胞内细胞生长必不可少的生物离子(如Ca~(2+))的浓度有关.  相似文献   

8.
Previously, we demonstrated the requirement for a minimum coherence time of an applied, small amplitude (10 μT) ELF magnetic field if the field were to produce an enhancement of ornithine decarboxylase activity in L929 fibroblasts. Further investigation has revealed a remarkably similar coherence time phenomenon for enhancement of ornithine decarboxylase activity by amplitude-modulated 915 MHz microwaves of large amplitude (SAR 2.5 W/kg). Microwave fields modulated at 55, 60, or 65 Hz approximately doubled ornithine decarboxylase activity after 8 h. Switching modulation frequencies from 55 to 65 Hz at coherence times of 1.0 s or less abolished enhancement, while times of 10 s or longer provided full enhancement. Our results show that the microwave coherence effects are remarkably similar to those observed with ELF fields. © 1993 Wiley-Liss. Inc.  相似文献   

9.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na+/K+ concentration and osmolality of extracelluar were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

10.
Living cells exist in an electrically noisy environment. This has led to the so-called “signal-to-noise” problem whereby cells are observed to respond to extremely-low-frequency (ELF) exogenous fields that are several orders of magnitude weaker than local endogenous fields associated with thermal fluctuations. To resolve this dilemma, we propose that living cells are affected only by electromagnetic fields that are spatially coherent over their surface. The basic idea is that a significant number of receptors must be simultaneously and coherently activated (biological cooperativity) to produce effects on the biochemical functioning of the cell. However, like all physical detection systems, cells are subject to the laws of conventional physics and can be confused by noise. This suggests that a spatially coherent but temporally random noise field superimposed on a coherent ELF signal will defeat the mechanism of discrimination against noise, and any observed field-induced bioeffects would be suppressed. An experimental test of this idea was conducted using morphological abnormalities in developing chick embryos caused by electromagnetic field exposure as the endpoint. At an impressed noise amplitude comparable to the ELF field strength (but roughly one-thousandth of the thermal noise field), the increased abnormality rate observed with only the ELF field present was reduced to a level essentially the same as for the control embryos. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The effects of extremely low frequency magnetic fields (ELF‐MF) on acetylcholinesterase (AChE) activity of synaptosomal membranes were investigated. Sinusoidal fields with 50 Hz frequency and different amplitudes caused AChE activity to decrease about 27% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. Identical results were obtained with exposure to static MF of the same amplitudes. Moreover, the inhibitory effects on enzymatic activity are spread over frequency windows with different maximal values at 60, 200, 350, and 475 Hz. When synaptosomal membranes were solubilized with Triton, ELF‐MF did not affect AChE activity, suggesting the crucial role of the membrane, as well as the lipid linkage of the enzyme, in determining the conditions for inactivation. The results are discussed in order to give an interpretation at molecular level of the macroscopic effects produced by ELF‐MF on biological systems, in particular the alterations of embryo development in many organisms due to acetylcholine accumulation. Bioelectromagnetics 31:270–276, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Potential effects of extremely low frequency (ELF) electromagnetic fields on periphyton were studied from 1983 to 1993 using a Before, After, Control and Impact design. The study was conducted at two sites on the Ford River, a fourth-order brown water trout stream in Dickinson County, Michigan. The Reference site received 4.9–6.5 times less exposure to ground electric fields and from 300 to 334 times less exposure to magnetic flux from 1989 to 1993 when the antenna was operational at 76 Hz than did the Antenna site. The objective of the study was to determine if ELF electromagnetic fields had caused changes in structure and/or function of algal communities in the Ford River. Significant differences in chlorophyll a standing crop and daily accumulation rate (a surrogate for primary productivity), and organic matter standing crop and daily accumulation rate were observed between the Reference and Antenna site after the antenna became operational. These four related community function variables all increased at the Antenna site with largest and most consistent increases occurring for chlorophyll measures. Compared to pre-operational data, the increase in chlorophyll at the Antenna site also occurred during a period of low amperage testing in 1986–1988, and did not increase further when the antenna became fully operational in 1989, indicating a low threshold for response. There was no significant differences between the Antenna and Reference sites in community structure variables such as diversity, evenness and the relative abundance of dominant diatoms. Thus, 76 Hz ELF electromagnetic radiation apparently did not change the basic makeup of the diatom community but did increase accumulation rates and standing crops of chlorophyll a and organic matter.  相似文献   

13.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The debate as to whether low-level electromagnetic fields can affect biological systems and in the long term cause health effects has been going on for a long time. Yet the interaction of weak electromagnetic fields (EMF) with living cells, undoubtedly a most important phenomenon, is still not well understood. The exact mechanisms by which the effects are produced have not been identified. Furthermore, it is not possible to clearly define which aspects of an EMF exposure that constitute the “dose.” One of the groups that contributed to solving this problem is the Bioelectromagnetics group at Catholic University of America (CUA), Washington, D.C. Their work has been devoted to investigating the physical parameters that are needed to obtain an effect of EMF exposure on biological systems, and also how to inhibit the effect. This is a review of their work on bioeffects caused by low-level EMF, their dependence on coherence time, constancy, spatial averaging, and also how the effects can be modified by an applied ELF noise magnetic field. The group has been using early chick embryos, and L929 and Daudi cells as their main experimental systems. The review also covers the work of other groups on low-level effects and the inhibition of the effects with an applied noise field. The group at CUA has shown that biological effects can be found after exposure to low-level ELF and RF electromagnetic fields, and when effects are observed, applying an ELF magnetic noise field inhibits the effects. Also, other research groups have tried to replicate the studies from the CUA group, or to apply EMF noise to suppress EMF-induced effects. Replications of the CUA effects have not always been successful. However, in all cases where the noise field has been applied to prevent an observed effect, it has been successful in eliminating the effect.  相似文献   

15.
This study assessed exposure to extremely low frequency (ELF) magnetic fields of welders and other metal workers and compared exposure from different welding processes. Exposure to ELF magnetic fields was measured for 50 workers selected from a nationwide cohort of metal workers and 15 nonrandomly selected full-time welders in a shipyard. The measurements were carried out with personal exposure meters during 3 days of work for the metal workers and 1 day of work for the shipyard welders. To record a large dynamic range of ELF magnetic field values, the measurements were carried out with “high/low” pairs of personal exposure meters. Additional measurements of static magnetic fields at fixed positions close to welding installations were done with a Hall-effect fluxmeter. The total time of measurement was 1273 hours. The metal workers reported welding activity for 5.8% of the time, and the median of the work-period mean exposure to ELF magnetic fields was 0.18 μT. DC metal inert or active gas welding (MIG/MAG) was used 80% of the time for welding, and AC manual metal arc welding (MMA) was used 10% of the time. The shipyard welders reported welding activity for 56% of the time, and the median and maximum of the workday mean exposure to ELF magnetic fields was 4.70 and 27.5 μT, respectively. For full-shift welders the average workday mean was 21.2 μT for MMA welders and 2.3 μT for MIG/MAG welders. The average exposure during the effective time of welding was estimated to be 65 μT for the MMA welding process and 7 μT for the MIG/MAG welding process. The time of exposure above 1 μT was found to be a useful measure of the effective time of welding. Large differences in exposure to ELF magnetic fields were found between different groups of welders, depending on the welding process and effective time of welding. MMA (AC) welding caused roughly 10 times higher exposure to ELF magnetic fields compared with MIG/MAG (DC) welding. The measurements of static fields suggest that the combined exposure to static and ELF fields of MIG/MAG (DC) welders and the exposure to ELF fields of MMA (AC) welders are roughly of the same level. Bioelectromagnetics 18:470–477, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The attenuation of opioid peptide-mediated antinociception or analgaesia is a well-established effect of extremely low frequency (ELF) magnetic fields. Results of prior studies indicated a modulatory role for light such that when the ELF exposures were carried out in the absence of light, the inhibitory effect on analgaesia was reduced. Here, we investigated whether this modulatory effect of light occurs at either the magnetic field detection stage or is associated with a post-detection mechanism. We compared the effects of the presence and absence of light on the attenuation of opioid-induced analgaesia in the land snail,Cepaea nemoralis, by (i) an ELF magnetic field (15 min, 60 Hz, 141 μT peak), and (ii) the prototypic opiate antagonist, naloxone. Determinations were performed during the subjective ''day'' and ''night'' in the presence (1.9 W m-2 and 1.0 mW m-2, respectively) and absence of light (less than 10-6W m-2). The inhibitory effects of the ELF magnetic fields and naloxone on opioid-induced analgaesia were similar in the presence of light; whereas in the absence of light the inhibitory effects of the ELF magnetic fields as a percentage of sham were markedly reduced, while those of naloxone were unaffected. This indicates that the modulatory effects of light on the actions of the ELF magnetic fields probably affect the detection mechanism prior to its coupling to the opioid system.  相似文献   

17.
An international seminar was held June 4-6, 1997, on the biological effects and related health hazards of ambient or environmental static and extremely low frequency (ELF) electric and magnetic fields (0-300 Hz). It was cosponsored by the World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the German, Japanese, and Swiss governments. Speakers provided overviews of the scientific literature that were discussed by participants of the meeting. Subsequently, expert working groups formulated this report, which evaluates possible health effects from exposure to static and ELF electric and magnetic fields and identifies gaps in knowledge requiring more research to improve health risk assessments. The working groups concluded that, although health hazards exist from exposure to ELF fields at high field strengths, the literature does not establish that health hazards are associated with exposure to low-level fields, including environmental levels. Similarly, exposure to static electric fields at levels currently found in the living and working environment or acute exposure to static magnetic fields at flux densities below 2 T, were not found to have demonstrated adverse health consequences. However, reports of biological effects from low-level ELF-field exposure and chronic exposure to static magnetic fields were identified that need replication and further study for WHO to assess any possible health consequences. Ambient static electric fields have not been reported to cause any direct adverse health effects, and so no further research in this area was deemed necessary.  相似文献   

18.
In 2002, we published a review of the cognitive and physiological effects of extremely low frequency magnetic fields (ELF MFs) and ELF-modulated radiofrequency fields associated with mobile phones. Since the original preparation of that review, a significant number of studies have been published using techniques such as electroencephalography, event-related potentials and positron emission tomography to investigate electromagnetic field effects upon human physiology and various measures of performance (cognitive, perceptual, behavioral). We review these recent studies, and when effects were observed, we reference the time course of observed effects (immediate or delayed). In our concluding remarks, we discuss a number of variables that are not often considered in human bioelectromagnetics studies, such as personality, individual differences and the specific laterality of ELF MF and mobile phone exposure over the brain. We also consider the sensitivity of various physiological assays and performance measures in the study of biological effects of electromagnetic fields.  相似文献   

19.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na(+)/K(+) concentration and osmolality of extracellular were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

20.
In vivo effects of Static Electric and ELF Magnetic and Electric fields have been carried out for more than 20 years in the Bioelectromagnetic Laboratory at the Biophysics Department of the Medical Faculty of Gazi University. In this article, the results of in vivo ELF Electric field studies are presented as a review. Static and 50 Hz ELF (Extremely Low Frequency) Electric (E) fields effects on free radical synthesis, antioxidant enzyme level, and collagen synthesis were analyzed on tissues of guinea pigs, such as brain, liver, lung, kidney, spleen, testis, and plasma. Animals were exposed to static and ELF electric fields with intensities ranging from 0.3 kV/m to 1.9 kV/m in vertical and horizontal directions. Exposure periods were 1, 3, 5, 7, and 10 days. Electric fields were generated from a specially designed parallel plate capacitor system. The results indicate that the effects of electric fields on the tissues studied depend significantly on the type and magnitude of electric field and exposure period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号