首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Total genomic DNA of 13 pseudomonads representing rRNA homology groups I-IV were screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes by Southern hybridization. Biotinylated probes for three structural genes (algA, algC and algD) and one regulatory gene (algR1) were prepared. Genomic DNA of strains representing group I (P. syringae pv. glycinea, P. viridiflava and P. corrugata) hybridized with all four gene probes. Hybridizing fragments were of differing sizes, indicating that evolutionary divergence among group I members has occurred. P. corrugata has not been reported to synthesize alginate. Genomic DNA from representatives of groups II-IV gave no or very weak hybridization with the probes except for algC. This study indicates that the ability to produce alginic acid as an exopolysaccharide among the pseudomonads is restricted to members of rRNA homology group I in agreement with earlier physiological studies.  相似文献   

4.
Alginate, a co-polymer of O-acetylated beta-1,4-linked D-mannuronic acid and L-guluronic acid, has been reported to function in the virulence of Pseudomonas syringae, although genetic studies to test this hypothesis have not been undertaken previously. In the present study, we used a genetic approach to evaluate the role of alginate in the pathogenicity of P. syringae pv. syringae 3525, which causes bacterial brown spot on beans. Alginate biosynthesis in strain 3525 was disrupted by recombining Tn5 into algL, which encodes alginate lyase, resulting in 3525.L. Alginate production in 3525.L was restored by the introduction of pSK2 or pAD4033, which contain the alginate biosynthetic gene cluster from P. syringae pv. syringae FF5 or the algA gene from P. aeruginosa respectively. The role of alginate in the epiphytic fitness of strain 3525 was assessed by monitoring the populations of 3525 and 3525.L on tomato, which is not a host for this pathogen. The mutant 3525.L was significantly impaired in its ability to colonize tomato leaves compared with 3525, indicating that alginate functions in the survival of strain 3525 on leaf surfaces. The contribution of alginate to the virulence of strain 3525 was evaluated by comparing the population dynamics and symptom development of 3525 and 3525.L in bean leaves. Although 3525. L retained the ability to form lesions on bean leaves, symptoms were less severe, and the population was significantly reduced in comparison with 3525. These results indicate that alginate contributes to the virulence of P. syringae pv. syringae 3525, perhaps by facilitating colonization or dissemination of the bacterium in planta.  相似文献   

5.
6.
7.
Mutations in the global regulatory genes gacS and gacA render Pseudomonas syringae pv. syringae strain B728a completely nonpathogenic in foliar infiltration assays on bean plants. It had been previously demonstrated that gac genes regulate alginate production in Pseudomonas species, while other published work indicated that alginate is involved in the pathogenic interaction of P. syringae on bean plants. Together, these results suggested that the effects of gacS and gacA mutations on virulence in B728a might stem directly from a role in regulating alginate. In this report, we confirm a role for gac genes in both algD expression and alginate production in B728a. However, B728a mutants completely devoid of detectable alginate were as virulent as the wild-type strain in our assay. Thus, factors other than, or in addition to, a deficiency of alginate must be involved in the lack of pathogenicity observed with gacS and gacA mutants.  相似文献   

8.
Chromosomal DNA from group I Pseudomonas species, Azotobacter vinelandii, Azomonas macrocytogens, Xanthomonas campestris, Serpens flexibilis, and three enteric bacteria was screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes (algA, pmm, algD, and algR1). All the group I Pseudomonas species tested (including alginate producers and nonproducers) contained sequences homologous to all the P. aeruginosa alg genes used as probes, with the exception of P. stutzeri, which lacked algD. Azotobacter vinelandii also contained sequences homologous to all the alg gene probes tested, while Azomonas macrocytogenes DNA showed homology to all but algD. X. campestris contained sequences homologous to pmm and algR1 but not to algA or algD. The helical bacterium S. flexibilis showed homology to the algR1 gene, suggesting that an environmentally responsive regulatory gene similar to algR1 exists in S. flexibilis. Escherichia coli showed homology to the algD and algR1 genes, while Salmonella typhimurium and Klebsiella pneumoniae failed to show homology with any of the P. aeruginosa alg genes. Since all the organisms tested are superfamily B procaryotes, these results suggest that within superfamily B, the alginate genes are distributed throughout the Pseudomonas group I-Azotobacter-Azomonas lineage, while only some alg genes have been retained in the Pseudomonas group V (Xanthomonas) and enteric lineages.  相似文献   

9.
Chromosomal DNA from group I Pseudomonas species, Azotobacter vinelandii, Azomonas macrocytogens, Xanthomonas campestris, Serpens flexibilis, and three enteric bacteria was screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes (algA, pmm, algD, and algR1). All the group I Pseudomonas species tested (including alginate producers and nonproducers) contained sequences homologous to all the P. aeruginosa alg genes used as probes, with the exception of P. stutzeri, which lacked algD. Azotobacter vinelandii also contained sequences homologous to all the alg gene probes tested, while Azomonas macrocytogenes DNA showed homology to all but algD. X. campestris contained sequences homologous to pmm and algR1 but not to algA or algD. The helical bacterium S. flexibilis showed homology to the algR1 gene, suggesting that an environmentally responsive regulatory gene similar to algR1 exists in S. flexibilis. Escherichia coli showed homology to the algD and algR1 genes, while Salmonella typhimurium and Klebsiella pneumoniae failed to show homology with any of the P. aeruginosa alg genes. Since all the organisms tested are superfamily B procaryotes, these results suggest that within superfamily B, the alginate genes are distributed throughout the Pseudomonas group I-Azotobacter-Azomonas lineage, while only some alg genes have been retained in the Pseudomonas group V (Xanthomonas) and enteric lineages.  相似文献   

10.
11.
12.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The lemA gene is conserved among strains and pathovars of Pseudomonas syringae. In P. syringae pv. syringae B728a, a causal agent of bacterial brown spot disese of bean, the lemA gene is required for lesion formation on leaves and pods. Using lemA-containing DNA as a probe, we determined that 80 P. syringae pv. syringae strains isolated from bean leaves could be grouped into seven classes based on restriction fragment length polymorphism. Marker exchange mutagenesis showed that the lemA gene was required for lesion formation by representative strains from each restriction fragment length polymorphism class. Hybridization to the lemA locus was detected within six different P. syringae pathovars and within Pseudomonas aeruginosa. Interestingly, a lemA homolog was present and functional within the nonpathogenic strain P. syringae Cit7. We cloned a lemA homolog from a genomic library of P. syringae pv. phaseolicola NPS3121, a causal agent of halo blight of bean, that restored lesion formation to a P. syringae pv. syringae lemA mutant. However, a lemA mutant P. syringae pv. phaseolicola strain retained the ability to produce halo blight disease symptoms on bean plants. Therefore, the lemA gene played an essential role in disease lesion formation by P. syringae pv. syringae isolates, but was not required for pathogenicity of a P. syringae pv. phaseolicola strain.  相似文献   

14.
15.
16.
17.
18.
Abstract Exopolysaccharides produced by plant pathogenic bacteria are thought to play an important role in both the general ecology and the virulence of the producing organism. The environmental factors affecting exopolysaccharide production in planta by Pseudomonas syringae pathovars are not known. We tested the effect of increased medium osmolarity and dehydration on exopolysaccharide production in a sucrose-containing medium by three P. syringae pathovars, one ( P. syringae pv. phaseolicola ) capable of levan and alginate production and two ( P. syringae pv. papulans and pv. savastanoi ) capable of only alginate production. Addition of NaCl and ethanol to the medium led to increased accumulation of alginate by all three pathovars as well as increased levan production by P. syringae pv. phaseolicola . Culture fluids of the two non-levan producers also contained increased amounts of neutral carbohydrate which was not levan. Based on sugar compostion this material may have originated from outer membrane lipopolysaccharide. In addition, the ratio of neutral material (levan or not) to alginate varied dependent on culture conditions.  相似文献   

19.
Plants, in general, appear to be able to detect the presence of incompatible Pseudomonas syringae strains by a hypothetical cell-cell recognition process to initiate inducible defense mechanisms that contribute to disease resistance. A 25-kb hrp/hrm gene cluster isolated from P. syringae pv. syringae 61(pHIR11) enables Escherichia coli to elicit a hypersensitive response (HR), a plant response generally considered to be a manifestation of recognition and resistance. To identify the nature of the HR-eliciting signal produced by E. coli cells carrying pHIR11, bacterial surface features were surveyed by immunological and biochemical procedures. No immunoreactive epitopes or outer membrane proteins were detected that were associated with expression of the P. syringae pv. syringae 61 hrp/hrm cluster in E. coli MC4100. Phenotypic expression of the P. syringae pv. syringae 61 hrp/hrm cluster in E. coli MC4100, however, was found to be dependent upon ompC and ompF, which control outer membrane permeability to hydrophilic solutes. The results suggest that deployment of the HR-eliciting signal occurs via outer membrane porins and imply that a low-molecular-weight, hydrophilic factor mediates signal exchange between the bacterium and the responding plant cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号