首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Olfactory receptors are difficult to functionally express in heterologous cells. They are typically retained in the endoplasmic reticulum of cells commonly used for functional expression studies and are only released to the plasma membrane in mature cells of the olfactory receptor neuron lineage. A recently developed olfactory cell line, odora, traffics olfactory receptors to the plasma membrane when differentiated. We found that undifferentiated odora cells do not traffic olfactory receptors to their surface, even though they release the receptors to the Golgi apparatus and endosomes. This behavior differs from other cell lines tested thus far. Differentiated odora cells also properly traffic vomeronasal receptors of the VN1 type, which lack sequence similarity to olfactory receptors. ODR-4, a protein that is necessary for plasma membrane trafficking of a chemosensory receptor in nematodes, facilitates trafficking of rat olfactory receptor U131 in odora and Chinese hamster ovary cells. Olfactory receptor trafficking from the endoplasmic reticulum to the plasma membrane involves at least two steps whose regulation depends on the maturation state of cells in the olfactory receptor neuron lineage. These results also indicate that some components of the regulatory mechanism are conserved.  相似文献   

2.
Lehman CW  Lee JD  Komives CF 《Genomics》2005,85(3):386-391
Olfactory receptors are a diverse set of G-protein-coupled receptors (GPCRs) that localize to cellular plasma membranes in the olfactory epithelium. Associated trafficking proteins often assist in targeting these GPCRs to the membrane, facilitating function. One such trafficking protein has been isolated as a mutant defective for both odorant response and proper receptor localization in Caenorhabditis elegans. This gene (ODR-4) allows for functional expression of olfactory receptors in heterologous cells that are otherwise incapable of targeting. We have isolated a full-length human cDNA that is homologous to the C. elegans gene at the protein level across nearly the entire gene by using a novel RecA-based gene enrichment procedure. This sequence is homologous to a family of orthologs that share predicted structural features, indicating a conserved function. The gene was expressed in 41 of 44 human, mouse, and rat tissues, suggesting an important role in trafficking olfactory and other GPCRs.  相似文献   

3.
Multiple trials failed to express significant amounts of olfactory receptors in heterologous cells as they are typically retained in the endoplasmic reticulum (ER). Evidence is accumulating that cell-type-specific accessory proteins regulate the folding of olfactory receptors, their exit from the ER, and the trafficking to the plasma membrane of the olfactory cilia where the receptors gain access to odorants. We found Hsc70t, a testis-enriched variant of the Hsp70 family of heat shock proteins which is specifically expressed in post-meiotic germ cells, in the olfactory epithelium of mouse and human. Cotransfected HEK293 cells with Hsc70t and different green fluorescent protein-tagged odorant receptors (ORs) from mouse and man showed a significantly enhanced OR expression. Hsc70t expression also changed the amount of cells functionally expressing olfactory receptors at the cell surface as the number of cells responding to odorants in Ca2+-imaging experiments significantly increased. Our results show that Hsc70t helps expression of ORs in heterologous cell systems and helped the characterization of an "orphan" human olfactory receptor.  相似文献   

4.
The mammalian olfactory G-protein coupled receptor family is comprised of hundreds of proteins that mediate odorant binding and initiate signal transduction cascades leading to the sensation of smell. However, efforts to functionally express olfactory receptors and identify specific odorant ligand–olfactory receptor interactions have been severely impeded by poor olfactory receptor surface expression in heterologous systems. Therefore, experiments were performed to elucidate the cellular mechanism(s) responsible for inefficient olfactory receptor cell surface expression. We determined that the mouse odorant receptors mI7 and mOREG are not selected for export from the ER and therefore are not detectable at the Golgi apparatus or plasma membrane. Specifically, olfactory receptors interact with the ER chaperone calnexin, are excluded from ER export sites, do not accumulate in ER–Golgi transport intermediates at 15 °C, and contain endoglycosidase H-sensitive oligosaccharides, consistent with olfactory receptor exclusion from post-ER compartments. A labile pool of ER-retained olfactory receptors are post-translationally modified by polyubiquitination and targeted for degradation by the proteasome. In addition, olfactory receptors are sequestered into ER aggregates that are degraded by autophagy. Collectively, these data demonstrate that poor surface expression of olfactory receptors in heterologous cells is attributable to a combination of ER retention due to inefficient folding and poor coupling to ER export machinery, aggregation, and degradation via both proteasomal and autophagic pathways Plasmids .  相似文献   

5.

Background  

Research on olfactory G-protein coupled receptors (GPCRs) has been severely impeded by poor functional expression in heterologous systems. Previously, we demonstrated that inefficient olfactory receptor (OR) expression at the plasma membrane is attributable, in part, to degradation of endoplasmic reticulum (ER)-retained ORs by the ubiquitin-proteasome system and sequestration of ORs in ER aggregates that are degraded by autophagy. Thus, experiments were performed to test the hypothesis that attenuation of ER degradation improves OR functional expression in heterologous cells.  相似文献   

6.
The molecular basis for glutamate receptor trafficking to the plasma membrane is not understood. In the present study, we demonstrate that Homer 1b (H1b), a constitutively expressed splice form of the immediate early gene product Homer (now termed Homer 1a) regulates the trafficking and surface expression of group I metabotropic glutamate receptors. H1b inhibits surface expression of the metabotropic glutamate receptor mGluR5 in heterologous cells, causing mGluR5 to be retained in the endoplasmic reticulum (ER). In contrast, mGluR5 alone or mGluR5 coexpressed with Homer 1a successfully travels through the secretory pathway to the plasma membrane. In addition, point mutations that disrupt mGluR5 binding to H1b eliminate ER retention of mGluR5, demonstrating that H1b affects metabotropic receptor localization via a direct protein-protein interaction. Electron microscopic analysis reveals that the group I metabotropic receptor mGluR1alpha is significantly enriched in the ER of Purkinje cells, suggesting that a similar mechanism may exist in vivo. Because H1b is found in dendritic spines of neurons, local retention of metabotropic receptors within dendritic ER provides a potential mechanism for regulating synapse-specific expression of group I metabotropic glutamate receptors.  相似文献   

7.
We performed an extensive mutational analysis of the canonical mouse odorant receptor (OR) M71 to determine the properties of ORs that inhibit plasma membrane trafficking in heterologous expression systems. We employed the use of the M71::GFP fusion protein to directly assess plasma membrane localization and functionality of M71 in heterologous cells in vitro or in olfactory sensory neurons (OSNs) in vivo. OSN expression of M71::GFP show only small differences in activity compared to untagged M71. However, M71::GFP could not traffic to the plasma membrane even in the presence of proposed accessory proteins RTP1S or mβ2AR. To ask if ORs contain an internal “kill sequence”, we mutated ~15 of the most highly conserved OR specific amino acids not found amongst the trafficking non-OR GPCR superfamily; none of these mutants rescued trafficking. Addition of various amino terminal signal sequences or different glycosylation motifs all failed to produce trafficking. The addition of the amino and carboxy terminal domains of mβ2AR or the mutation Y289A in the highly conserved GPCR motif NPxxY does not rescue plasma membrane trafficking. The failure of targeted mutagenesis on rescuing plasma membrane localization in heterologous cells suggests that OR trafficking deficits may not be attributable to conserved collinear motifs, but rather the overall amino acid composition of the OR family. Thus, we performed an in silico analysis comparing the OR and other amine receptor superfamilies. We find that ORs contain fewer charged residues and more hydrophobic residues distributed throughout the protein and a conserved overall amino acid composition. From our analysis, we surmise that it may be difficult to traffic ORs at high levels to the cell surface in vitro, without making significant amino acid modifications. Finally, we observed specific increases in methionine and histidine residues as well as a marked decrease in tryptophan residues, suggesting that these changes provide ORs with special characteristics needed for them to function in olfactory neurons.  相似文献   

8.
Stargazin is an accessory protein of AMPA receptors that enhances surface expression and also affects the biophysical properties of the receptor. AMPA receptor domains necessary for either of these two processes have not yet been identified. Here, we used confocal imaging and electrophysiology of heterologously expressed, fluorophore-tagged GluR1, GluR2, and stargazin to study surface expression and desensitization kinetics. Stargazin-mediated trafficking was sensitive to the nature of the AMPA receptor cytoplasmic domain. The insertion of YFP after residue 15 of the truncated cytoplasmic tail of GluR1i perturbed stargazin-mediated trafficking of the receptor but not its modulation of desensitization kinetics. This construct also failed to permit fluorescence resonance energy transfer (FRET) with stargazin in the endoplasmic reticulum (ER), whereas FRET between fluorophore-tagged stargazin and non-truncated AMPA receptors demonstrated a specific interaction between these proteins, both in the ER and the plasma membrane. Rather than encoding a specific binding site, the fluorophore-tagged C terminus may restrict access to one or more ER retention sites. Although perturbations of the C terminus impeded stargazin-mediated trafficking to the plasma membrane, the effects of stargazin on the biophysical properties of AMPA receptors (i.e. modulation of desensitization) remained intact. These data provide strong evidence that the AMPA receptor domains required for stargazin modulation of gating and trafficking are separable.  相似文献   

9.
Kainate receptors (KARs) are mediators of excitatory neurotransmission in the mammalian central nervous system, and their efficient targeting and trafficking is critical for normal synaptic function. A key step in the delivery of KARs to the neuronal plasma membrane is the exit of newly assembled receptors from the endoplasmic reticulum (ER). Here we report the identification of a novel ER retention signal in the alternatively spliced C-terminal domain of the GluR5-2b subunit, which controls receptor trafficking in both heterologous cells and neurons. The ER retention motif consists of a critical arginine (Arg-896) and surrounding amino acids, disruption of which promotes ER exit and surface expression of the receptors, as well as altering their physiological properties. The Arg-896-mediated ER retention of GluR5 is regulated by a mutation that mimics phosphorylation of Thr-898, but not by PDZ interactions. Furthermore, two positively charged residues (Arg-900 and Lys-901) in the C terminus were also found to regulate ER export of the receptors. Taken together, our results identify novel trafficking signals in the C-terminal domain of GluR5-2b and demonstrate that alternative splicing is an important mechanism regulating KAR function.  相似文献   

10.
Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.  相似文献   

11.
Very little is understood about the trafficking of G protein-coupled receptors (GPCRs) from the endoplasmic reticulum (ER) to the plasma membrane. Rab guanosine triphosphatases (GTPases) are known to participate in the trafficking of various GPCRs via a direct interaction during the endocytic pathway, but whether this occurs in the anterograde pathway is unknown. We evaluated the potential interaction of Rab1, a GTPase known to regulate β2-adrenergic receptor (β2AR) trafficking, and its effect on export from the ER. Our results show that GTP-bound Rab1 interacts with the F(x)(6)LL motif of β2AR. Receptors lacking the interaction motif fail to traffic properly, suggesting that a direct interaction with Rab1 is required for β2AR anterograde trafficking.  相似文献   

12.
13.
Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of roles in the regulation of synaptic network activity. The function of glutamate receptors (GluRs) is highly dependent on their surface density in specific neuronal domains. Alternative splicing is known to regulate surface expression of GluR5 and GluR6 subunits. The KAR subunit GluR7 exists under different splice variant isoforms in the C-terminal domain (GluR7a and GluR7b). Here we have studied the trafficking of GluR7 splice variants in cultured hippocampal neurons from wild-type and KAR mutant mice. We have found that alternative splicing regulates surface expression of GluR7-containing KARs. GluR7a and GluR7b differentially traffic from the ER to the plasma membrane. GluR7a is highly expressed at the plasma membrane, and its trafficking is dependent on a stretch of positively charged amino acids also found in GluR6a. In contrast, GluR7b is detected at the plasma membrane at a low level and retained mostly in the endoplasmic reticulum (ER). The RXR motif of GluR7b does not act as an ER retention motif, at variance with other receptors and ion channels, but might be involved during the assembly process. Like GluR6a, GluR7a promotes surface expression of ER-retained subunit splice variants when assembled in heteromeric KARs. However, our results also suggest that this positive regulation of KAR trafficking is limited by the ability of different combinations of subunits to form heteromeric receptor assemblies. These data further define the complex rules that govern membrane delivery and subcellular distribution of KARs.  相似文献   

14.
Studies on olfactory receptor (OR) pharmacology have been hindered by the poor plasma membrane localization of most ORs in heterologous cells. We previously reported that association with the beta(2)-adrenergic receptor (beta(2)-AR) facilitates functional expression of the OR M71 at the plasma membrane of HEK-293 cells. In the present study, we examined the specificity of M71 interactions with other G protein-coupled receptors (GPCRs). M71 was co-expressed in HEK-293 cells with 42 distinct GPCRs, and the vast majority of these receptors had no significant effect on M71 surface expression. However, co-expression with three subtypes of purinergic receptor (P2Y(1)R, P2Y(2)R, and A(2A)R) resulted in markedly enhanced plasma membrane localization of M71. Agonist stimulation of M71 co-expressed with P2Y(1)R and P2Y(2)R activated the mitogen-activated protein kinase pathway via coupling of M71 to Galpha(o). We also examined the ability of beta(2)-AR, P2Y(1)R, P2Y(2)R, and A(2A)Rto interact with and regulate ORs beyond M71. We found that co-expression of beta(2)-AR or the purinergic receptors enhanced the surface expression for an M71 subfamily member but not for several other ORs from different subfamilies. In addition, through chimeric receptor studies, we determined that the second transmembrane domain of beta(2)-AR is necessary for beta(2)-AR facilitation of M71 plasma membrane localization. These studies shed light on the specificity of OR interactions with other GPCRs and the mechanisms governing olfactory receptor trafficking.  相似文献   

15.
The G protein-coupled olfactory receptor (OR) superfamily plays a critical role in recognizing a broad range of odorants. Each OR appears to recognize odorants based on similarities in molecular structures such that mOR-EG, a mouse OR, binds eugenol, vanillin, and some other structurally related odorants. Only a few ORs, however, have been characterized functionally due to the difficulties in expressing ORs in heterologous cells. In this report, we demonstrate roles of the N- and C-terminal domains as key elements in the functional expression and signal transducing activity of an OR. Disruption of the N-terminal glycosylation site of the mOR-EG completely impaired its membrane trafficking to the cell surface. Functional expression of the mOR-EG was greatly enhanced by addition of extra N-terminal glycosylation sequences. Addition of a C-terminal epitope-tag or C-terminal truncation significantly reduced the odorant-response activity, although the receptors were properly targeted to the plasma membrane. Analysis of a series of truncated ORs revealed a region in the C-terminus that was crucial for the receptor activity. Replacement of the C-terminal portion of the mOR-EG with that of rhodopsin disrupted the coupling to G(alphas) but not to G(alpha15), demonstrating that the C-terminus is involved in regulating G protein specificity. These results suggest that glycosylation of the N-terminal portion is critical for OR expression and membrane trafficking, while the C-terminal portion plays a role in defining proper conformation, which, in turn, specifies the G protein selectivity of the OR. This information helps clarify the mechanisms that regulate membrane trafficking and G protein interaction of the OR superfamily.  相似文献   

16.
N-methyl-d-aspartate (NMDA) receptors are glutamate ionotropic receptors that play critical roles in synaptic transmission, plasticity, and excitotoxicity. The functional NMDA receptors, heterotetramers composed mainly of two NR1 and two NR2 subunits, likely pass endoplasmic reticulum quality control before they are released from the endoplasmic reticulum and trafficked to the cell surface. However, the mechanism underlying this process is not clear. Using truncated and mutated NMDA receptor subunits expressed in heterologous cells, we found that the M3 domains of both NR1 and NR2 subunits contain key amino acid residues that contribute to the regulation of the number of surface functional NMDA receptors. These key residues are critical neither for the interaction between the NR1 and NR2 subunits nor for the formation of the functional receptors, but rather they regulate the early trafficking of the receptors. We also found that the identified key amino acid residues within both NR1 and NR2 M3 domains contribute to the regulation of the surface expression of unassembled NR1 and NR2 subunits. Thus, our data identify the unique role of the membrane domains in the regulation of the number of surface NMDA receptors.  相似文献   

17.
Many G-protein coupled receptors (GPCRs), such as odorant receptors (ORs), cannot be characterized in heterologous cells because of their difficulty in trafficking to the plasma membrane. In contrast, a surrogate OR, the GPCR mouse β2-adrenergic-receptor (mβ2AR), robustly traffics to the plasma membrane. We set out to characterize mβ2AR mutants in vitro for their eventual use in olfactory axon guidance studies. We performed an extensive mutational analysis of mβ2AR using a Green Fluorescent Protein-tagged mβ2AR (mβ2AR::GFP) to easily assess the extent of its plasma membrane localization. In order to characterize mutants for their ability to successfully transduce ligand-initiated signal cascades, we determined the half maximal effective concentrations (EC50) and maximal response to isoprenaline, a known mβ2AR agonist. Our analysis reveals that removal of amino terminal (Nt) N-glycosylation sites and the carboxy terminal (Ct) palmitoylation site of mβ2AR do not affect its plasma membrane localization. By contrast, when both the Nt and Ct of mβ2AR are replaced with those of M71 OR, plasma membrane trafficking is impaired. We further analyze three mβ2AR mutants (RDY, E268A, and C327R) used in olfactory axon guidance studies and are able to decorrelate their plasma membrane trafficking with their capacity to respond to isoprenaline. A deletion of the Ct prevents proper trafficking and abolishes activity, but plasma membrane trafficking can be selectively rescued by a Tyrosine to Alanine mutation in the highly conserved GPCR motif NPxxY. This new loss-of-function mutant argues for a model in which residues located at the end of transmembrane domain 7 can act as a retention signal when unmasked. Additionally, to our surprise, amongst our set of mutations only Ct mutations appear to lower mβ2AR EC50s revealing their critical role in G-protein coupling. We propose that an interaction between the Nt and Ct is necessary for proper folding and/or transport of GPCRs.  相似文献   

18.
Although homodimerization has been demonstrated for a large number of G protein-coupled receptors (GPCRs), no general role has been attributed to this process. Because it is known that oligomerization plays a key role in the quality control and endoplasmic reticulum (ER) export of many proteins, we sought to determine if homodimerization could play such a role in GPCR biogenesis. Using the beta2-adrenergic receptor (beta2AR) as a model, cell fractionation studies revealed that receptor homodimerization is an event occurring as early as the ER. Supporting the hypothesis that receptor homodimerization is involved in ER processing, beta2AR mutants lacking an ER-export motif or harboring a heterologous ER-retention signal dimerized with the wild-type receptor and inhibited its trafficking to the cell surface. Finally, in addition to inhibiting receptor dimerization, disruption of the putative dimerization motif, 276GXXXGXXXL284, prevented normal trafficking of the receptor to the plasma membrane. Taken together, these data indicate that beta2AR homodimerization plays an important role in ER export and cell surface targeting.  相似文献   

19.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

20.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号