首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
焦磷酸法最早是应用在检测DNA甲基化和SNP位点分析的一项技术,在2005年底,此技术被用来进行基因组序列的测定,已经成为下一代高通量测序中最成熟的一种技术.本篇文章着重介绍了采用焦磷酸测序法的罗氏公司最新一代高通量基因组测序系统GS FLX的技术原理,操作过程和广泛的应用范围.  相似文献   

2.
454测序法在环境微生物生态研究中的应用   总被引:3,自引:0,他引:3  
传统的Sanger测序技术虽已成熟,但其速度和成本的限制满足不了大规模测序的要求。第二代高通量测序技术结合了乳胶微粒和皮升级反应的454焦磷酸测序法,作为一种高通量测序技术,具有分析结果准确、高速、高灵敏度和高自动化的特点。对454测序法的技术原理和操作步骤进行了介绍,对近年来运用该方法在环境微生物生态研究领域的进展进行了综述。  相似文献   

3.
综述了高通量测序技术在线粒体全基因组测序中的策略,利用该技术对线粒体全基因组进行序列测定的方法可以归纳为两种,一种是先对目标mt DNA进行富集,包括mt DNA的提取纯化,目标区域PCR扩增法以及特异性探针杂交富集法(可分为基于微阵列和基于PCR探针的杂交富集法),然后对富集出的线粒体DNA进行高通量测序;另一种是先从待测样本的基因组高通量数据中挖掘出线粒体基因组序列信息,之后利用诱饵序列或者近缘物种的线粒体全基因组参考序列,使用软件MITObim对其进行组装。此外,还给出了线粒体高通量测序的优化流程图和介绍了混合样品的线粒体高通量测序策略。  相似文献   

4.
基因芯片与高通量DNA测序技术前景分析   总被引:8,自引:0,他引:8  
基因芯片与第二代DNA测序是两种重要的高通量基因组学研究技术,对于揭示基因组的结构与功能已经并正在发挥重要的推动作用.基因芯片技术建立了10多年,技术日渐成熟,在功能基因组、系统生物学、药物基因组的研究中已经得到了广泛的应用.2003年,454公司首先建立了高通量的第二代测序技术,其他公司相继推出了Solexa和Solid测序技术.虽然第二代测序技术建立的时间不长,但发展非常快,已经应用于基因组,包括测序和表观基因组学以及功能基因组学研究的许多方面.本文简要综述了基因芯片和第二代测序技术及其应用进展,并分析了这两种高通量基因组学技术的前景.  相似文献   

5.
证明噬菌体高通量测序中高频出现的序列即是噬菌体基因组的末端序列。在T3噬菌体基因组末端连接特异性序列接头,然后进行高通量测序,同时将不加接头的T3基因组也进行高通量测序,对测序结果进行生物信息学比较分析。采用类似高通量测序技术分析N4样噬菌体的全基因组序列。加接头的序列与无接头序列中的高频序列完全一致,证明了高通量测序过程中得到的高频序列就是加接头的基因组末端序列,同时证明T4样噬菌体的末端具有序列特异性而非完全随机,此外我们还发现N4样噬菌体基因组左侧末端具有唯一序列,而其基因组右侧末端不均一。高通量测序技术方便快捷,可用于噬菌体基因组末端和全基因组序列的同时测定。  相似文献   

6.
近几年飞速发展的高通量测序技术(next generation sequencing,NGS)在生命科学研究的各个领域充分展现了其低成本、高通量和应用面广等优势。在现代农业生物技术领域,利用高通量测序技术,科学家们不仅能更经济而高效对农作物、模式植物或不同栽培品种进行深入的全基因组测序、重测序,也可以对成百上千的栽培品种进行高效而准确的遗传差异分析、分子标记分析、连锁图谱分析、表观遗传学分析、转录组分析,进而改进农作物的育种技术,加快新品种的育种研究。其中,获得农作物的全基因组序列是其他研究和分析的基础。本文通过介绍近年来发表的一些利用高通量测序技术进行的农作物全基因组测定和组装的工作,展示高通量测序技术在现代农业生物技术领域的广泛前景以及其建立起来的研究基础。  相似文献   

7.
高通量测序技术在动植物研究领域中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
高通量测序是核酸测序研究的一次革命性技术创新, 该技术以极低的单碱基测序成本和超高的数据产出量为特征, 为基因组学和后基因组学研究带来了新的科研方法和解决方案. 在动植物研究领域, 高通量测序引领了一次具有里程碑意义的科学研究模式革新, 科研人员可利用该技术在基因组、转录组和表观基因组等领域展开多层次多方面多水平研究. 本文就高通量测序技术应用于动植物基因组学和功能基因组学研究进展进行了系统阐述, 并对当前高通量测序技术的现状和热点及未来的发展趋势作了深入剖析和讨论.  相似文献   

8.
基于高通量皮升级微反应池的焦磷酸测序技术以其测序读长长的优势,在测序领域有着不可替代的位置.在高通量焦磷酸测序过程中,微反应池之间的光学串扰以及微反应池中的化学残留严重影响测序原始图像的信噪比,限制了测序的读长及准确性.本研究通过在微反应池侧壁分别选择性蒸镀钛和铝金属膜,有效地将相邻微反应池之间的平均光学串扰率降低约一个数量级.此外,通过在微反应池表面蒸镀二氧化硅层,显著地改善了微反应池表面物理形貌,有效地减少了微反应池中的化学残留.表面蒸镀钛-二氧化硅的微反应池光学串扰低、化学残留少,可应用于高通量焦磷酸测序等相关领域.  相似文献   

9.
Shi H  Yu RL  Ma JF  Ren XY 《遗传》2011,33(11):1283-1290
文章旨在建立一种单管、快速及高通量的华法林药物代谢酶相关基因多态性的检测方法。通过抽取人外周血DNA,应用带有生物素标记的扩增引物,经PCR扩增并制备焦磷酸测序单链模板,于PyroMark ID焦磷酸测序仪上进行焦磷酸测序,以Sanger测序法测序结果为对照,观察分析的准确性。结果显示,华法林药物代谢酶的3个相关基因多态性(CYP2C9*2、CYP2C9*3、VKORC1(-1693))于单管中可被同时检测,一次可获得96份DNA的华法林药物代谢相关多态性位点检测结果。经与Sanger测序方法比较,符合率为100%。结果表明本方法可准确、高通量、快速检测华法林药物代谢酶相关基因多态性,与单管检测一个位点的焦磷酸测序方法相比,能有效降低检测成本,节省检测时间。该方法在个性化医疗上有较大的推广应用价值,也可以将该平台运用于其他疾病相关基因多态性检测。  相似文献   

10.
高通量测序技术及其应用   总被引:14,自引:0,他引:14  
高通量测序技术是DNA测序发展历程的一个里程碑,它为现代生命科学研究提供了前所未有的机遇。详细介绍了以454、Solexa和SOLiD为代表的第二代高通量测序技术,以HeliScope TIRM和Pacific Biosciences SMRT为代表的单分子测序技术,以及最近Life Science公司推出的Ion Personal Genome Machine (PGM)测序技术等高通量测序技术的最新进展。在此基础上,阐述了高通量测序技术在基因组测序、转录组测序、基因表达调控、转录因子结合位点的检测以及甲基化等研究领域的应用。最后,讨论了高通量测序技术在成本和后续数据分析等方面存在的问题及其未来的发展前景。  相似文献   

11.
随着基因测序技术的创新和应用,新的高通量测序技术不断涌现,以Pacific Biosciences(PacBio)公司的单分子实时测序(single molecule real time sequencing)为代表的第三代测序(third generation sequencing,TGS)技术开始逐渐应用于基因组研究,包括大型基因组拼装、基因结构变异和表观遗传研究等方面。本文主要对TGS技术的原理、特点和应用,特别是在病毒研究中的应用进行介绍,并与第二代测序(next generation sequencing,NGS)技术进行比较,为基因组测序技术的选择及其临床应用提供一定参考。  相似文献   

12.
13.
刘星晨  谷守芹  董金皋 《微生物学报》2017,57(11):1634-1642
CRISPR/Cas9技术是在特定的RNA引导下,利用特异的核酸酶实现对基因组进行编辑的新技术。自2013年该技术体系建立起来已成功应用于动物、植物及真菌中。本文简述了3种基于核酸酶的基因编辑技术及其应用,概述了CRISPR/Cas9系统的组成及其作用机理,总结了CRISPR/Cas9在模式真菌酿酒酵母及丝状真菌中的应用,并就在丝状真菌中应用该技术时sg RNA表达盒的设计、Cas9表达盒的优化、抗性标记的筛选、受体的选择等方面提出具体的研究方法。另外,针对该技术应用过程中出现的脱靶效应、Cas9核定位信号的添加、启动子的选择及多个靶基因的编辑等问题提出了建议与展望,希望能够为初次涉足该领域的科研人员提供理论参考和技术支持。  相似文献   

14.
锌指核酸酶在基因组定向修饰中的应用   总被引:1,自引:0,他引:1  
同源重组和逆转录病毒介导转基因法是目前基因组修饰中常用的两种主要方法.由于这些传统方法效率低,特异性差等缺点,制约了其在研究中的应用.锌指核酸酶(zinc finger nuclease,ZFN)是一种人工合成酶,含有锌指蛋白DNA结合域和非特异性核酸酶FokI结构域. ZFN在对基因组的靶向修饰时,表现出高度特异性和高效性. 最新研究结果显示,锌指核酸酶在哺乳动物细胞和斑马鱼基因组靶向敲除的效率高达20%.这一技术的出现,将给基因组靶向修饰的研究和应用领域带来革命,特别是在基因治疗人类疾病方面有巨大的潜力和广阔的前景.  相似文献   

15.
Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety.  相似文献   

16.
本研究介绍了基因组结构变异检测的生物信息学基本方法和前沿技术。对基于第二代测序技术的四种检测方法(读对方法,读深方法,分裂片段方法和序列拼接方法)的原理和特点进行了详细解读,分析了第二代测序技术应用在检测结构变异上的特点与发展趋势。最后介绍了三代测序、Linked-reads和光学物理图谱等新技术在基因组结构变异检测中的应用,论述了融合新技术的结构变异检测方法的特点与优势。  相似文献   

17.
基因编辑(gene editing)技术可以对目的基因进行定点插入、敲除和置换。基于CRISPR-Cas9的基因编辑技术是继锌指核酸酶和转录激活样效应物核酸酶之后的第3代基因编辑技术。近年来,CRISPR-Cas9系统作为研究的热点被广泛应用于医学、药学、植物学、动物学和微生物学等领域,但其在植物次生代谢物领域的应用还处于探索时期。阐述了基于CRISPR-Cas9基因编辑技术的发展历程、工作原理和几种常用的基因编辑方法及其应用实例,总结了CRISPR-Cas9技术在对植物次生代谢产物研究方面的应用。利用CRISPR-Cas9系统可对植物基因组进行定点敲除、突变和插入,以达到提高植物次生代谢物含量、改良作物品质和提高植物抗性等目的。该技术已在植物次生代谢物生物合成关键酶基因的编辑等方面显示出越来越重要的作用。  相似文献   

18.
目的:21世纪以来,随着合成生物学的高速发展及其所遇到的问题,开发下一代DNA合成技术已经成为了必然趋势。基因芯片技术和DNA大片段组装技术是建立下一代DNA合成平台的关键技术力量。方法:为了开发具有工业化标准的DNA芯片一基因组合成平台,我们首次利用电化学DNA芯片和DNA大片段组装技术合成了72kb的Ostreococcusmud的全叶绿体基因组。结果:首先,我们使用电化学DNA芯片合成仪合成了564条150bp的OligoMix,并成功扩增分离了其中96%的Oligo序列,剩下的基因组序列是通过传统的固相亚磷酰胺三脂合成法合成。在此基础上,我们利用DNA重组技术将564条150bpOligo片段分三步克隆到了一个pGSYN系统。通过高通量测序,我们证实叶绿体基因组被成功地人工合成。整个合成成本大约是目前传统基因合成成本的10%.20%。结论:研究证实基因芯片技术和DNA大片段组装技术的应用是能够明显的降低现阶段基因组合成工艺的成本。新技术的成熟推广和成本的有效控制也会进一步加速科学家对基因组功能的深入研究以及合成生物学的质的飞跃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号