首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non‐axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73°C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by‐products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono‐ and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out‐competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non‐sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics. Biotechnol. Bioeng. 2009;102: 1361–1367. © 2008 Wiley Periodicals, Inc.  相似文献   

2.

Background

Caldicellulosiruptor saccharolyticus has the ability to produce hydrogen (H2) at high yields from a wide spectrum of carbon sources, and has therefore gained industrial interest. For a cost-effective biohydrogen process, the ability of an organism to tolerate high partial pressures of H2 (PH2) is a critical aspect to eliminate the need for continuous stripping of the produced H2 from the bioreactor.

Results

Herein, we demonstrate that, under given conditions, growth and H2 production in C. saccharolyticus can be sustained at PH2 up to 67 kPa in a chemostat. At this PH2, 38% and 16% of the pyruvate flux was redirected to lactate and ethanol, respectively, to maintain a relatively low cytosolic NADH/NAD ratio (0.12 mol/mol). To investigate the effect of the redox ratio on the glycolytic flux, a kinetic model describing the activity of the key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was developed. Indeed, at NADH/NAD ratios of 0.12 mol/mol (K i of NADH = 0.03 ± 0.01 mM) GAPDH activity was inhibited by only 50% allowing still a high glycolytic flux (3.2 ± 0.4 mM/h). Even at high NADH/NAD ratios up to 1 mol/mol the enzyme was not completely inhibited. During batch cultivations, hydrogen tolerance of C. saccharolyticus was dependent on the growth phase of the organism as well as the carbon and energy source used. The obtained results were analyzed, based on thermodynamic and enzyme kinetic considerations, to gain insight in the mechanism underlying the unique ability of C. saccharolyticus to grow and produce H2 under relatively high PH2.

Conclusion

C. saccharolyticus is able to grow and produce hydrogen at high PH2, hence eliminating the need of gas sparging in its cultures. Under this condition, it has a unique ability to fine tune its metabolism by maintaining the glycolytic flux through regulating GAPDH activity and redistribution of pyruvate flux. Concerning the later, xylose-rich feedstock should be preferred over the sucrose-rich one for better H2 yield.
  相似文献   

3.
NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol H2 per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol g−1 h−1 and 20 mmol l−1 h−1. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield.  相似文献   

4.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

5.
To utilize fermentative bacteria for producing the alternative fuel hydrogen, we performed successive rounds of P1 transduction from the Keio Escherichia coli K-12 library to introduce multiple, stable mutations into a single bacterium to direct the metabolic flux toward hydrogen production. E. coli cells convert glucose to various organic acids (such as succinate, pyruvate, lactate, formate, and acetate) to synthesize energy and hydrogen from formate by the formate hydrogen-lyase (FHL) system that consists of hydrogenase 3 and formate dehydrogenase-H. We altered the regulation of FHL by inactivating the repressor encoded by hycA and by overexpressing the activator encoded by fhlA, removed hydrogen uptake activity by deleting hyaB (hydrogenase 1) and hybC (hydrogenase 2), redirected glucose metabolism to formate by using the fdnG, fdoG, narG, focA, focB, poxB, and aceE mutations, and inactivated the succinate and lactate synthesis pathways by deleting frdC and ldhA, respectively. The best of the metabolically engineered strains, BW25113 hyaB hybC hycA fdoG frdC ldhA aceE, increased hydrogen production 4.6-fold from glucose and increased the hydrogen yield twofold from 0.65 to 1.3 mol H2/mol glucose (maximum, 2 mol H2/mol glucose).  相似文献   

6.
To enhance biohydrogen production, Clostridium beijerinckii was co‐cultured with Geobacter metallireducens in the presence of the reduced extracellular electron shuttle anthrahydroquinone‐2, 6‐disulfonate (AH2QDS). In the co‐culture system, increases of up to 52.3% for maximum cumulative hydrogen production, 38.4% for specific hydrogen production rate, 15.4% for substrate utilization rate, 39.0% for substrate utilization extent, and 34.8% for hydrogen molar yield in co‐culture fermentation were observed compared to a pure culture of C. beijerinckii without AH2QDS. G. metallireducens grew in the co‐culture system, resulting in a decrease in acetate concentration under co‐culture conditions and a presumed regeneration of AH2QDS from AQDS. These co‐culture results demonstrate metabolic crosstalk between the fermentative bacterium C. beijerinckii and the respiratory bacterium G. metallireducens and suggest a strategy for industrial biohydrogen production. Biotechnol. Bioeng. 2013; 110: 164–172. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A gram-positive, motile, rod-shaped, strictly anaerobic bacterium was isolated from an enrichment initiated with sediment taken from below the cyanobacterial mat of a low-salinity pond on the McMurdo Ice Shelf, Antarctica. The organism grew optimally at 12° C, at pH 6.5, and at an NaCl concentration of < 0.5% (w/v). It survived freeze-thawing at low salt concentrations, but not exposure to temperatures over 25° C for more than 20 h or short-term exposure to temperatures > 50° C. Out of a variety of polysaccharides tested as growth substrates, only xylan supported growth. The organism also grew on a variety of mono- and disaccharides including the cyanobacterial cell wall constituent, N-acetyl glucosamine. Fermentation products on a mol product per 100 mol of hexose monomer fermented basis were: acetate, 72; formate, 72; butyrate, 55; hydrogen, 114; and CO2, 100. Not detectable in the culture medium (< 2 mol per 100 mol of monomer) were lactate, propionate, ethanol, n-propanol, n-butanol, and succinate. The G+C content of the DNA from the bacterium was 33 mol%, and a phylogenetic analysis indicated that it grouped closely with members of the RNA-DNA homology group 1 of the genus Clostridium. It differed from other species of this genus with regard to growth temperature optimum, substrate range, and fermentation pattern, and is therefore designated as a new species of Clostridium for which the name Clostridium vincentii is proposed. The type strain is lac-1 (DSM 10228). Received: 6 August 1996 / Accepted: 30 October 1996  相似文献   

8.
Desulfotomaculum carboxydivorans, recently isolated from a full-scale anaerobic wastewater treatment facility, is a sulfate reducer capable of hydrogenogenic growth on carbon monoxide (CO). In the presence of sulfate, the hydrogen formed is used for sulfate reduction. The organism grows rapidly at 200 kPa CO, pH 7.0, and 55°C, with a generation time of 100 min, producing nearly equimolar amounts of H2 and CO2 from CO and H2O. The high specific CO conversion rates, exceeding 0.8 mol CO (g protein)−1 h−1, makes this bacterium an interesting candidate for a biological alternative of the currently employed chemical catalytic water–gas shift reaction to purify synthesis gas (contains mainly H2, CO, and CO2). Furthermore, as D. carboxydivorans is capable of hydrogenotrophic sulfate reduction at partial CO pressures exceeding 100 kPa, it is also a good candidate for biodesulfurization processes using synthesis gas as electron donor at elevated temperatures, e.g., in biological flue gas desulfurization. Although high maximal specific sulfate reduction rates (32 mmol (g protein)−1 h−1) can be obtained, its sulfide tolerance is rather low and pH dependent, i.e., maximally 9 and 5 mM sulfide at pH 7.2 and pH 6.5, respectively.  相似文献   

9.
Biotechnological intensification of biogas production   总被引:1,自引:0,他引:1  
The importance of syntrophic relationships among microorganisms participating in biogas formation has been emphasized, and the regulatory role of in situ hydrogen production has been recognized. It was assumed that the availability of hydrogen may be a limiting factor for hydrogenotrophic methanogens. This hypothesis was tested under laboratory and field conditions by adding a mesophilic (Enterobacter cloacae) or thermophilic hydrogen-producing (Caldicellulosyruptor saccharolyticus) strain to natural biogas-producing consortia. The substrates were waste water sludge, dried plant biomass from Jerusalem artichoke, and pig manure. In all cases, a significant intensification of biogas production was observed. The composition of the generated biogas did not noticeably change. In addition to being a good hydrogen producer, C. saccharolyticus has cellulolytic activity; hence, it is particularly suitable when cellulose-containing biomass is fermented. The process was tested in a 5-m3 thermophilic biogas digester using pig manure slurry as a substrate. Biogas formation increased at least 160–170% upon addition of the hydrogen-producing bacteria as compared to the biogas production of the spontaneously formed microbial consortium. Using the hydrogenase-minus control strain provided evidence that the observed enhancement was due to interspecies hydrogen transfer. The on-going presence of C. saccharolyticus was demonstrated after several months of semicontinuous operation.  相似文献   

10.
The hyperthermophilic bacterium, Thermotoga neapolitana, has potential for use in biological hydrogen (H2) production. The objectives of this study were to (1) determine the fermentation stoichiometry of Thermotoga neapolitana and examine H2 production at various growth temperatures, (2) investigate the effect of oxygen (O2) on H2 production, and (3) determine the cause of glucose consumption inhibition. Batch fermentation experiments were conducted at temperatures of 60, 65, 70, 77, and 85°C to determine product yield coefficients and volumetric productivity rates. Yield coefficients did not show significant changes with respect to growth temperature and the rate of H2 production reached maximum levels in both the 77°C and 85°C experiments. The fermentation stoichiometry for T. neapolitana at 85°C was 3.8 mol H2, 2 mol CO2, 1.8 mol acetate, and 0.1 mol lactate produced per mol of glucose consumed. Under microaerobic conditions H2 production did not increase when compared to anaerobic conditions, which supports other evidence in the literature that T. neapolitana does not produce H2 through microaerobic metabolism. Glucose consumption was inhibited by a decrease in pH. When pH was adjusted with buffer addition cultures completely consumed available glucose. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
A methane-oxidizing bacterium capable of nitrogen fixation was isolated from soil taken from an area which leaked methane gas. Strain T-1 was a catalase and oxidase-positive, gram-negative straight rod-shaped strictly aerobic bacterium which formed lipid cysts and type II intracytoplasmic membranes. The organism was a microaerophilic nitrogen-fixing methanotroph. Strain T-1 is considered to be classified intoMethylocystis. The organism evolved hydrogen gas when grown in the nitrogen-free medium of atmospheric oxygen concentrations of 1.5% or more. Below this level, however, hydrogen gas was not evolved. In addition to methanol, formaldehyde and formate, ethanol, acetate and hydrogen gas served as oxidizable substrates for the acetylene reduction test. H2-stimulated nitrogenase activity was limited in a very narrow range of oxygen concentration and not detected at 2% O2. With acetate as the substrate, however, about an 80% of the maximum acetylene reduction activity was detected at 2% O2. These results suggest that strain T-1 is capable of recycling the hydrogen gas evolved during nitrogen fixation under low partial pressures of O2.  相似文献   

12.
Microbial conversion of lignocellulose to hydrogen is a fascinating way to provide a renewable energy source. A mesophilic bacterium strain G1 that had high cellulose degradation and hydrogen production activity (2.38 mmol H2 g−1 cellulose) was isolated from rumen fluid and identified as the Enterococcus gallinarum. Hydrogen production from cellulose by using sequential co-cultures of a cellulosic-hydrolysis bacterium G1 and Ethanoigenens harbinense B49 was investigated. With an initial Avicel concentration of 5 g l−l, the sequential co-culture with G1 and strain Ethanoigenens harbinense B49 produced H2 yield approximately 2.97 mmol H2 g−1 cellulose for the co-culture system.  相似文献   

13.
The gram-negative anaerobic gut bacterium Bilophila wadsworthia is the third most common isolate in perforated and gangrenous appendicitis, being also found in a variety of other infections. This organism performs a unique kind of anaerobic respiration in which taurine, a major organic solute in mammals, is used as a source of sulphite that serves as terminal acceptor for the electron transport chain. We show here that molecular hydrogen, one of the major products of fermentative bacteria in the colon, is an excellent growth substrate for B. wadsworthia. We have quantified the enzymatic activities associated with the oxidation of H2, formate and pyruvate for cells obtained in different growth conditions. The cell extracts present high levels of hydrogenase activity, and up to five different hydrogenases can be expressed by this organism. One of the hydrogenases appears to be constitutive, whereas the others show differential expression in different growth conditions. Two of the hydrogenases are soluble and are recognised by antibodies against a [FeFe] hydrogenase of a sulphate reducing bacterium. One of these hydrogenases is specifically induced during fermentative growth on pyruvate. Another two hydrogenases are membrane-bound and show increased expression in cells grown with hydrogen. Further work should be carried out to reveal whether oxidation of hydrogen contributes to the virulence of B. wadsworthia.  相似文献   

14.
To isolate a salt tolerant hydrogen-producing bacterium, we used the sludge from the intertidal zone of a bathing beach in Tianjin as inoculum to enrich hydrogen-producing bacteria. The sludge was treated by heat-shock pretreatment with three different temperature (80, 100 and 121°C) respectively. A hydrogen-producing bacterium was isolated from the sludge pretreated at 80°C by sandwich plate technique and identified using microscopic examination and 16S rDNA gene sequence analysis. The isolated bacterium was named as Bacillus sp. B2. The present study examined the hydrogen-producing ability of Bacillus sp. B2. The strain was able to produce hydrogen over a wide range of initial pH from 5.0 to 10.0, with an optimum at pH 7.0. The level of hydrogen production was also affected by the salt concentration. Strain B2 has unique capability to adapt high salt concentration. It could produce hydrogen at the salt concentration from 4 to 60‰. The maximum of hydrogen-producing yield of strain B2 was 1.65 ± 0.04 mol H2/mol glucose (mean ± SE) at an initial pH value of 7.0 in marine culture conditions. Hydrogen production under fresh culture conditions reached a higher level than that in marine ones. As a result, it is likely that Bacillus sp. B2 could be applied to biohydrogen production using both marine and fresh organic waste.  相似文献   

15.
Stably sustained continuous production of hydrogen with high molar yield was achieved through a combination of dark fermentative hydrogen evolution by Chlamydomonas sp. strain MGA161 and hydrogen photoevolution by a marine photosynthetic bacterium W-1S in an alternating light-dark cycle as a model of the day-night cycle. The newly isolated strain W-1S could use acetic acid and ethanol excreted by strain MGA161 as electron donors for hydrogen photoevolution. The fermentation broth of strain MGA161 stimulated the hydrogen photoproduction of strain W-1S. This alga-bacterial combination had a high conversion yield of 8 mol H2/mol of glucose of starch, with the possibility of improvement up to 10.5.  相似文献   

16.
Macroalgae are considered to be promising biomass for fuels and chemicals production. To utilize brown macroalgae as biomass, the degradation of alginate, which is the main carbohydrate of brown macroalgae, into monomeric units is a critical prerequisite step. Saccharophagus degradans 2-40 is capable of degrading more than ten different polysaccharides including alginate, and its genome sequence demonstrated that this bacterium contains several putative alginate lyase genes including alg17C. The gene for Alg17C, which is classified into the PL-17 family, was cloned and overexpressed in Escherichia coli. The recombinant Alg17C was found to preferentially act on oligoalginates with degrees of polymerization higher than 2 to produce the alginate monomer, 4-deoxy-l-erythro-5-hexoseulose uronic acid. The optimal pH and temperature for Alg17C were found to be 6 and 40 °C, respectively. The K M and V max of Alg17C were 35.2 mg/ml and 41.7 U/mg, respectively. Based on the results of this study, Alg17C could be used as the key enzyme to produce alginate monomers in the process of utilizing alginate for biofuels and chemicals production.  相似文献   

17.

Background  

The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.  相似文献   

18.
An obligately anaerobic sporeforming bacterium assigned to a new genus and species Anaerobacter polyendosporus gen. et spec. nov. is described. Characteristic features distinguishing the bacterium from known anaerobic sporeformers were variable cell shape, including spherical, the ability to form up to five endospores per cell, diffusive distribution of reserve polysaccharide throughout the cytoplasm, independence from growth factors. The eubacterial nature of the organism was revealed by its sensitivity to 1 mg/l of streptomycin, rifampicin, penicillin and to lysozyme. It belonged to Firmicutes by the type of cell wall structure. The cell wall consisted of one layer; the outer membrane was absent. The cells were not motile. The spores were spherical or oval, heat-resistant, contained dipicolinic acid and had typical endospore structure. Cortex, coats, spore coare, and in most cases exosporium could be distinguished. The bacterium fermented carbohydrates, but not amino acids. The products of fermentation included ethanol, acetate, lactate, butyrate, butanol, H2 and CO2. Sulfate or nitrate could not be used as electron acceptors, but nitrite was reduced to NH 4 + in a dissimilatory process. The bacterium was capable of fixing N2. The G + C content of the DNA was 29 mol %. The bacterium was isolated from meadow-gley soil.  相似文献   

19.
Summary In ammonium-limitation (4.55 mM NH4 +) at a dilution rate (D)=0.081 h–1,Clostridium butyricum produced 2 mol H2 per mol glucose consumed at pH 5.0, but at a low fermentation rate. At higher pH, important amounts of extracellular protein were produced. Phosphatelimitation (0.5 mM PO4 –3) at D=0.061 h–1 and pH 7.0 were the best conditions tested for hydrogen gas production (2.22 mol H2 per mol glucose consumed) at a high fermentation rate. Steady-state growth at lower pH and with 0.1 mM PO4 –3 resulted in proportional higher glucose incorporation into biomass and lower H2 production. C. pasteurianum in NH4 + limitation showed higher fermentation rates thanC. butyricum and a stabilized H2 production around 2.08 (±0.06) mol per mol glucose consumed at various defined pH conditions, although the acetate/butyrate ratio increased to 1 at pH 7.0. The latter was also observed in phosphate-limitation, but here H2 production was maximal (1.90 mol. per mol glucose consumed) at the lowest pH (5.5) tested.  相似文献   

20.
Improvement of fermentative hydrogen production: various approaches   总被引:17,自引:2,他引:17  
Fermentation of biomass or carbohydrate-based substrates presents a promising route of biological hydrogen production compared with photosynthetic or chemical routes. Pure substrates, including glucose, starch and cellulose, as well as different organic waste materials can be used for hydrogen fermentation. Among a large number of microbial species, strict anaerobes and facultative anaerobic chemoheterotrophs, such as clostridia and enteric bacteria, are efficient producers of hydrogen. Despite having a higher evolution rate of hydrogen, the yield of hydrogen [mol H2 (mol substrate–1)] from fermentative processes is lower than that achieved using other methods; thus, the process is not economically viable in its present form. The pathways and experimental evidence cited in the literature reveal that a maximum of four mol of hydrogen can be obtained from substrates such as glucose. Modifications of the fermentation process, by redirection of metabolic pathways, gas sparging and maintaining a low partial pressure of hydrogen to make the reaction thermodynamically favorable, efficient product removal, optimum bioreactor design and integrating fermentative process with that of photosynthesis, are some of the ways that have been attempted to improve hydrogen productivity. This review briefly describes recent advances in these approaches towards improvement of hydrogen yield by fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号