首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal localization of uroplakin genes of cattle and mice   总被引:2,自引:0,他引:2  
The asymmetric unit membrane (AUM) of the apical surface of mammalian urinary bladder epithelium contains several major integral membrane proteins, including uroplakins IA and IB (both 27 kDa), II (15 kDa), and III (47 kDa). These proteins are synthesized only in terminally differentiated bladder epithelial cells. They are encoded by separate genes and, except for uroplakins IA and IB, appear to be unrelated in their amino acid sequences. The genes encoding these uroplakins were mapped to chromosomes of cattle through their segregation in a panel of bovine x rodent somatic cell hybrids. Genes for uroplakins IA, IB, and II were mapped to bovine (BTA) Chromosomes (Chrs) 18 (UPK1A), 1 (UPK1B), and 15 (UPK2), respectively. Two bovine genomic DNA sequences reactive with a uroplakin III cDNA probe were identified and mapped to BTA 6 (UPK3A) and 5 (UPK3B). We have also mapped genes for uroplakins 1A and II in mice, to the proximal regions of mouse Chr 7 (Upk1a) and 9 (Upk2), respectively, by analyzing the inheritance of restriction fragment length variants in recombinant inbred mouse strains. These assignments are consistent with linkage relationships known to be conserved between cattle and mice. The mouse genes for uroplakins IB and III were not mapped because the mouse genomic DNA fragments reactive with each probe were invariant among the inbred strains tested. Although the stoichiometry of AUM proteins is nearly constant, the fact that the uroplakin genes are unlinked indicates that their expression must be independently regulated. Our results also suggest likely positions for two human uroplakin genes and should facilitate further analysis of their possible involvement in disease.  相似文献   

2.
We studied the diversity of all forms of the RuBisCO large subunit-encoding gene cbbL in three RuBisCO uncharacterized hydrothermal vent communities. This diversity included the archaeal cbbL and the forms IC and ID, which have not previously been studied in the deep-sea environment, in addition to the forms IA, IB and II. Vent plume sites were Fryer and Pika in the Mariana arc and the Suiyo Seamount, Izu-Bonin, Japan. The cbbL forms were PCR amplified from plume bulk microbial DNA and then cloned and sequenced. Archaeal cbbL was detected in the Mariana samples only. Both forms IA and II were amplified from all samples, while the form IC was amplified only from the Pika and Suiyo samples. Only the Suiyo sample showed amplification of the form ID. The form IB was not recorded in any sample. Based on rarefaction analysis, nucleotide diversity and average pairwise difference, the archaeal cbbL was the most diverse form in Mariana samples, while the bacterial form IA was the most diverse form in the Suiyo sample. Also, the Pika sample harbored the highest diversity of cbbL phylogenetic lineages. Based on pairwise reciprocal library comparisons, the Fryer and Pika archaeal cbbL libraries showed the most significant difference, while Pika and Suiyo showed the highest similarity for forms IA and II libraries. This suggested that the Fryer supported the most divergent sequences. All archaeal cbbL sequences formed unique phylogenetic lineages within the branches of anaerobic thermophilic archaea of the genera Pyrococcus, Archaeoglobus, and Methanococcus. The other cbbL forms formed novel phylogenetic clusters distinct from any recorded previously in other deep-sea habitats. This is the first evidence for the diversity of archaeal cbbL in environmental samples.  相似文献   

3.
Antarctic “moss pillars” are lake-bottom biocenoses that are primarily comprised of aquatic mosses. The pillars consist of distinct redox-affected sections: oxidative exteriors and reductive interiors. Batteries of SSU rRNA genotypes of eukaryotes, eubacteria, and cyanobacteria, but no archaea, have been identified in these pillars. However, rRNA-based phylogenetic analysis provides limited information on metabolic capabilities. To investigate the microorganisms that have the potential for CO2 fixation in the pillars, we studied the genetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, EC 4.1.1.39)—an enzyme involved in CO2 fixation. PCR clone libraries targeting all forms of the RuBisCO large subunit-encoding gene were constructed and 1,092 clones were randomly sequenced. Phylogenetic analysis indicated that proteobacterial form IA operational RuBisCO units (ORUs) were detected at the same frequency as the cyanobacterial form IB ORUs. Surprisingly, the form IA ORU, which was closely related to the sequences from deep-sea environments, was detected from all moss pillar sections. The form IB ORU related to Bryophyta, considered to be derived from moss, was identical to the sequence of Leptobryum sp. isolated from Lake Hotoke-Ike where the pillars were found. Moreover, certain cyanobacterial ORUs were found exclusively in the exterior of the pillar, whereas form II ORUs related to chemolithoautotrophic sulfur oxidizers and purple sulfur bacteria were found exclusively in the interior. No forms IC, ID, or III RuBisCO genes were detected. This is the first report demonstrating that bacteria with the potential for CO2 fixation and chemoautotrophy are present in the Antarctic moss pillar ecosystem.  相似文献   

4.
Summary Random Tn5 mutagenesis of antibiotic-resistant derivatives of Rhizobium phaseoli CFN42 yielded several independent mutants that were sensitive to methionine sulfoximine (MSs), a specific inhibitor of glutamine synthetase (GS). These MSs mutants were analyzed for GSI and GSII activities and for their symbiotic properties. Four classes of MSs mutants have been distinguished. Class I strains are impaired in their synthesis of glutamine and in their symbiotic properties. Class II strains have wild type levels of GSI and GSII activities but have a reduced capacity to fix nitrogen. Class III strains have lost GSII activity, but their symbiotic properties are wild type. In class IV mutants neither glutamine synthesis nor symbiotic properties are affected. Mutants of classes I, III, and IV all have the Tn5 inserted into the chromosome, whereas in class II mutants the Tn5 is located in plasmid p42e, a plasmid different from the previously identified symbiotic plasmid p42d.  相似文献   

5.
We have recently cloned a cDNA encoding mitochondrial porin in Drosophila melanogaster and shown its chromosomal localization (Messina et al., FEBS Lett. (1996) 384, 9–13). Such cDNA was used as a probe for screening a genomic library. We thus cloned and sequenced a 4494-bp genomic region which contained the whole gene for the mitochondrial porin or VDAC. It was found that this D. melanogaster porin gene contains five exons, numbered IA (115 bp), IB (123 bp), II (320 bp), III (228 bp) and IV (752 bp). The exons II, III and IV contain the protein coding sequence and the 3′ untranslated sequence (3′-UTR). The first base in exon II precisely corresponds to the first base of the starting ATG codon. Exon IA corresponds to the 5′-UTR sequence reported in the published cDNA sequence. Exon IB corresponds to an alternative 5′-UTR sequence, demonstrated to be transcribed by 5′-RACE experiments. The exon-intron splicing borders and the length of the exon III perfectly match a homologous internal exon detected in the mouse genes. Such exon encodes a protein domain predicted by sequence transmembrane arrangement models to contain major hydrophilic loops and it is thus suspected to have a conserved distinct function. In situ hybridization experiments confirmed the localization of the genomic clone on the chromosome 2L at region 32B3-4. Together with genomic Southern blotting at various stringencies, the same experiment did not confirm the presence of a second genetic locus on D. melanogaster chromosomes. Northern blots demonstrated that the porin gene is a housekeeping one: three messages of approx. 1.2–1.6 kbp are transcribed in every fly developmental stage that was studied. They were shown to derive by an alternative usage of different promoters and polyadenylation sites.  相似文献   

6.
《Insect Biochemistry》1990,20(2):99-104
The activity and molecular organization of NAD+ kinase have been studied throughout the life cycle of the silkworm, Bombyx mori. The apparent molecular weights of the enzyme forms revealed by 3–20% polyacrylamide gel electrophoresis were determined to be; I, 138,000; II, 152,000; III, 182,000 and IV, 205,000 daltons. The pattern and relative percentage composition of the molecular forms, as well as the specific activity of NAD+ kinase, were shown to undergo changes in the transition from one developmental phase to another. Form I of the NAD+ kinase is present only at the end of embryogenesis, form II is characteristic of actively growing larvae, form III is present at all developmental stages, except the end of embryogenesis, while form IV appears at the stages when development is provided by endogenic energy resources.  相似文献   

7.
Abstract— Acetylcholinesterase (AChE) and pseudocholinesterase (°ChE) were studied in vivo and during the first several months of development of pectoral and posterior latissimi dorsi (PLD) muscles in normal and dystrophic chickens. Muscle extracts were prepared in a high ionic strength-nonionic detergent medium in the presence of protease inhibitors, in order to obtain complete solubilization and to prevent degradation of intrinsic molecular forms of both enzymes. In both normal and dystrophic pectoral muscles levels of AChE and °ChE increase rapidly in vivo, °ChE accounting for 5–10% of total cholinesterase activity. In the normal pectoral muscle the concentration of both enzymes drops rapidly after hatching with increasing muscle mass; total AChE per muscle remains relatively constant for 30 days post-hatch. In the dystrophic pectoral muscle both AChE and °ChE accumulate after hatching, resulting in greatly elevated levels (approx 10–25-fold) of both enzymes throughout the period studied. Multiple molecular forms of AChE and °ChE are observed in the pectoral muscle by sucrose gradient centrifugation. Four principal forms are distinguished: two light (L1, L2), one medium (M), and one heavy (H2). The °ChE forms are 0.5–1.0 S units lighter than the corresponding AChE forms. L2 is the predominant light form of AChE, whereas L1 is the major light °ChE form detected. The lighter forms of AChE predominate in normal and dystrophic embryonic pectoral muscle at day 14, being replaced by the H2 form by day 19. H2 is the major °ChE form detected at day 19. After hatching, H2 AChE is the predominant form found in both of the normal muscles studied. In the dystrophic pectoral muscle, progressive accumulation of the L2 form of AChE is detected as early as day 4 post-hatch; this form eventually becomes predominant, although the heavier forms are also elevated. In PLD muscle the same phenomenon occurs, but with a slower time course. In dystrophic pectoral muscle a similar rise in the L1 form of °ChE is first observed by day 4, with heavier forms also elevated in the mature muscle. Thus the alteration in the control of these two enzymes in dystrophic fast-twitch muscles results in an accumulation of the light forms of AChE and °ChE.  相似文献   

8.
The specific activity of NAD+ kinase (ATP:NAD+ 2-phosphotransferase, EC 2.7.1.23) from Neurospora crassa shows sharp peaks when the organism enters a new developmental stage of the asexual life cycle: the peaks are observed during hydration and germination of conidia, at the transition from exponential to stationary growth and at the photostimulated conidiation. As stimulation of NAD+ kinase activity by light in conidiating mycelium is not sensitive to translation inhibitors, the activiation of pre-existing molecules, rather than induction of protein synthesis de novo may be supposed. Enzyme electrophoresis revealed the presence of four forms of NAD+ kinase having different apparent molecular weights (I=333,000; II=306,000; III=229,000 and IV=203,000). Manifestation of the activity of individual forms of NAD+ kinase is developmentally controlled: form III is most abundant during vegetative growth, forms I and II prevail in conidia. At the conidial germination the increase of NAD+ kinase activity is associated with the activation of form III, whereas during photostimulation of conidiation form II is the most activated one. Therefore, certain molecular forms of the enzyme may be regarded as biochemical markers for different developmental stages of N. crassa.  相似文献   

9.
Multiple forms of phytase in germinating cotyledons of Cucurbita maxima   总被引:1,自引:0,他引:1  
Meera Goel  C.B. Sharma 《Phytochemistry》1979,18(12):1939-1942
Multiple forms of phytase (myoinositol hexaphosphate phosphohydrolase, EC 3.1.3.8) have been isolated in highly purified forms from germinating Cucurbita maxima cotyledons using acetone and ammonium sulphate fractionation, Sephadex gel filtration and ion exchange chromatography on DEAE- and CM-cellulose. Gel filtration produced two peaks of phytase activity; phytase I (high MW) and phytase II (low MW). Phytase I was further resolved into 4 distinct species on CM-cellulose and these were designated phytase IA, IB, IC and ID, according to their elution order. On the other hand, phytase II remained as a single species with a purification of 35-fold. The MWs of each phytase I species were identical (MW 66 500 ± 4000) and they were twice the MW of phytase II (MW 32 400 ± 4000) indicating that I and II may be structurally related. The properties of various molecular forms were compared. The difference in properties between phytase II and phytase I isoenzymes (IA, IB, IC and ID) was more pronounced than that observed among the isoenzymes of phytase I alone.  相似文献   

10.
The tracks of normal organisms of Oxytricha bifaria and of stage IA, IB, II, III, IV and V doublets were studied to test the hypothesis that the doublet might function as a dispersal form. Stage IA, the only stage to swim, swims straight with only rare interruptions; its rate of mobility (Rmo = 443 micro/s) is roughly twice that of singlets (Rmo = 218 micro/s). Stage IA doublets swim in three-dimensional movement which enables them to be carried away by water currents. The other stages seem to represent passage back towards the normal singlet form. The ethological evidence reported here together with other results already published supports the working hypothesis that the doublet of O. bifaria is a dispersal form suggests that the doublet might well represent a special fourth differentiation state of this species in addition to pairs, giants, and cysts.  相似文献   

11.
The protein complexes of the mitochondrial respiratory chain associate in defined ways forming supramolecular structures called respiratory supercomplexes or respirasomes. In plants, additional oxidoreductases participate in respiratory electron transport, e.g. the so-called “alternative NAD(P)H dehydrogenases” or an extra terminal oxidase called “alternative oxidase” (AOX). These additional enzymes were previously reported not to form part of respiratory supercomplexes. However, formation of respiratory supercomplexes might indirectly affect “alternative respiration” because electrons can be channeled within the supercomplexes which reduces access of the alternative enzymes towards their electron donating substrates. Here we report an investigation on the supramolecular organization of the respiratory chain in thermogenic Arum maculatum appendix mitochondria, which are known to have a highly active AOX for heat production. Investigations based on mild membrane solubilization by digitonin and protein separation by blue native PAGE revealed a very special organization of the respiratory chain in A. maculatum, which strikingly differs to the one described for the model plant Arabidopsis thaliana: (i) complex I is not present in monomeric form but exclusively forms part of a I + III2 supercomplex, (ii) the III2 + IV and I + III2 + IV supercomplexes are detectable but of low abundance, (iii) complex II has fewer subunits than in A. thaliana, and (iv) complex IV is mainly present as a monomer in a larger form termed “complex IVa”. Since thermogenic tissue of A. maculatum at the same time has high AOX and I + III2 supercomplex abundance and activity, negative regulation of the alternative oxidase by supercomplex formation seems not to occur. Functional implications are discussed.  相似文献   

12.
  • 1.1. Three forms of cholinesterase were sequentially extracted from head and tentacles of Sepia officinalis and noted as low-salt (LSS), detergent (DS) and high-salt (HSS) soluble. They represent about 24, 30 and 46% of total activity.
  • 2.2. All enzyme forms seem to be amphiphilic proteins with hydrophobic domains interacting with non-ionic detergent (Triton X-100) and giving self-aggregation (LSS form).
  • 3.3. The DS form is membrane-anchored by a phosphatidylinositol, while the HSS form is likely linked to some proteoglycan molecule of the extracellular matrix by ionic interactions.
  • 4.4. According to Vmax/Km values, all the enzymes are acetylcholinesterases, even if hydrolyze propionylthiocoline at the highest rate.
  • 5.5. Some kinetic and molecular properties of the studied enzymes are compared with those of other cholinesterases from vertebrates and invertebrates. Possible phylogenic and adaptive features are discussed.
  相似文献   

13.
1. In a recent study, we distinguished two classes of amphiphilic AChE3 dimers in Torpedo tissues: class I corresponds to glycolipid-anchored dimers and class II molecules are characterized by their lack of sensitivity to PI-PLC and PI-PLD, relatively small shift in sedimentation with detergent, and absence of aggregation without detergent. 2. In the present report, we analyze the amphiphlic or nonamphiphilic properties of globular AChE forms in T28 murine neural cells, rabbit muscle, and chicken muscle. The molecular forms were identified by sucrose gradient sedimentation in the presence and absence of detergent and analyzed by nondenaturing charge-shift electrophoresis. Some amphiphilic forms showed an abnormal electrophoretic migration in the absence of detergent, because of the retention of detergent micelles. 3. We show that the amphiphilic monomers (G1a) from these tissues, as well as the amphiphilic dimers (G2a) from chicken muscle, resemble the class II dimers of Torpedo AChE. We cannot exclude that these molecules possess a glycolipidic anchor but suggest that their hydrophobic domain may be of a different nature. We discuss their relationship with other cholinesterase molecular forms.  相似文献   

14.
The transformation of schizandrin (I) into gomisin A (II) was accomplished by use of a combination of biotransformation and chemical reactions. The biotransformation, microbial O-demethylation of I by Cuntiinghamella echinulata var. elegans (ATCC 9245) produced two novel metabolites [3-norschizandrin (IV) and 2-norschizandrin (VI)] and two known metabolites [gomisin T (III) and 13-norschizandrin (V)]. Among those metabolites, compound III was derived to II by the O-demethylation with a Lewis acid in the presence of an acid scavenger, followed by methylenation.  相似文献   

15.
Studies from several laboratories have demonstrated the existence of at least three separable forms of the hepatic enzyme, tyrosine aminotransferase. The significance of these separable forms of the enzyme isolated in vitro for the nature and regulation of the enzyme in vivo has been the subject of some controversy. The studies reported in this paper demonstrate the existence of a heat-labile, pH- and temperature-dependent, nondialyzable component associated predominantly with the lysosomal and mitochondrial fraction of rat liver which catalyzes the conversion of form II to forms III and IV of the enzyme. The activity of this conversion factor is not significantly affected by F?, molybdate ions, or two inhibitors of proteases. On the other hand, the cyanate ion completely inhibits the conversion of form II to forms III and IV of tyrosine aminotransferase, as do iodoacetate and oxidized glutathione. p-Chloromercuribenzoate also markedly inhibits the conversion. Kinetic studies suggest that the shift from one form to another follows the pathway: II to III to IV. Titration of the available sulfhydryl groups of the three forms of the enzyme demonstrates that form II possesses between 16 and 17 titratable SH groups per mole, while forms III and IV possess 15 and 13 or 14, respectively. The possible catalytic mechanism by which the conversion of the multiple forms of tyrosine aminotransferase is accomplished is discussed.  相似文献   

16.
17.
A clonal culture of Spirogyra filaments of initially uniform width produced filaments of three additional significantly different widths. Group I filaments of the original clone were 30.9 ± 0.7 μm wide (mean ± SD, N = 50). Group I filaments produced Group II filaments (22.0 ± 1.1 μm) through vegetative growth and sexual reproduction. Zygospores from homothallic Group I filaments produced germlings representative of Groups I and II; zygospores from homothallic Group II filaments produced germlings representative of Group II only. Germlings of Groups III (27.7 ± 1.0 μm) and IV (44.9 ± 0.8 μm) were produced in the cross of I × II. Viable zygospores from homothallic Group III filaments were obtained. Cells of Group IV filaments were initially binucleate and did not conjugate. Of the six intergroup crosses possible, four resulted in conjugation-tube formation only; two crosses yielded zygospores (I × II and III × IV). Germlings from the successful cross of Groups III and IV produced filaments of all four groups. Chromosome counts were: Group I (24), Group II (12), Group III (18), and Group IV (24, one nucleus). Relative nuclear fluorescence values of mithramycin-stained DNA were (mean ± SD, N ≥ 30): Group I (11.1 ± 1.4), Group II (5.7 ± 0.7), Group III (8.8 ± 1.3), and Group IV (10.0 ± 0.9, one nucleus). Cytologically, Group II appears to be a diploid (2x), Group I a tetraploid (4x), and Group III a triploid (3x). Systematically, Groups I, II, and III key out to Spirogyra singularis, S. communis, and S. fragilis, respectively, using Transeau's mongraph of the family Zygnemataceae. These species are interpreted to represent a species complex of S. communis (whose name has priority) with the ancestral haploid (x = 6) missing.  相似文献   

18.
Summary A highly purified preparation of filamentous hemagglutinin (FHA) from Bordetella pertussis was analyzed for its protein composition by gel electrophoretic methods. In this preparation of FHA the following native species could be detected by polyacrylamide gel electrophoresis (PAGE) at pH 3.2: S, and S2 (inactive subunits or fragments); two monomers, a major form designated Ia (144K), and a minor form lb, differing only in net charge; and three oligomeric forms, designated II (213K), III (595K) and IV (1064K). Hemagglutinating activity was associated predominantly with component Ia. PAGE of FHA after derivatization with sodium dodecyl sulfate (SDS) showed there to be three major species, designated A, C and D. According to estimated molecular weight values, A, C and D are likely to correspond to S2, Ia and II respectively. Isolated components II, III and IV yield all three SDS-species upon derivatization with SDS. Both moving boundary electrophoresis and gel electrofocusing showed hemagglutinating FHA to be a basic protein. Its apparent pI is 8.1.  相似文献   

19.
New crystal forms of glutamine synthetase from Escherichia coli are reported. Two of these (II A and II B) demand that the dodecameric molecule contains a 2-fold axis of symmetry perpendicular to the apparent hexagonal face.Whereas forms II A and II B and others reported previously (I and III A) were grown from enzyme containing covalently bound AMP groups, a third new form (III C) was grown from enzyme lacking covalently bound AMP groups. Form III C is isomorphous with form III A. This demonstrates that the addition of AMP groups, which profoundly affect the catalytic and regulatory properties of glutamine synthetase, does not alter the dimensions of the molecular envelope. Thus adenylylation of the enzyme does not seem to cause a quaternary structural transition, though small changes of intensities suggest that there may be tertiary structural changes within the subunits.Other new forms include form III B, a low symmetry polymorph, closely related to form III A, and form IV, a trigonal polymorph with large asymmetric unit. All crystal forms are consistent with a symmetry of 622 for the glutamine synthetase molecule.  相似文献   

20.
The regulation of homoserine dehydrogenase (HSD) activity (EC 1.1.1.3) by L-threonine, L-cysteine and K+ was examined using extracts of organs of soybean seedlings harvested 3, 6, 11, and 19 days after germination. K+ stimulated HSD activity from each source at least 2-fold. HSD activity was completely inhibited by 10 mM L-cysteine while 10 mM D-cysteine was not inhibitory. A progressive decrease in sensitivity of NAD-dependent HSD to inhibition by 10 mM L-threonine occurred in all organs except the leaf during the sampling period. This progressive decrease in sensitivity of the HSD to threonine inhibition was detected only when K+ was present in the assay mixtures. Four major molecular forms, including one rapidly migrating form (form I) and three more slowly migrating forms (forms II, III, IV) of HSD, were identified in extracts of soybean organs by polyacrylamide electrophoresis. Chromatographic and electrophoretic data indicate that form I, which was not inhibited by threonine or stimulated by K+, was of lower MW than forms II, III and IV which were of similar MW. These latter 3 forms were inhibited by threonine and stimulated by K+. During soybean seedling development form II increased in amount and forms I and IV decreased in amount. This alteration in the amounts of the forms of HSD occurred during the same period as the decrease in the amount of threonine inhibition. Since K+ stimulation of HSD decreased during soybean organ development and K+ enhanced threonine inhibition, this might account for the observed decrease in threonine inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号