首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. The metabolism of [1-(14)C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with (14)C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1-(14)C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of (14)CO(2) from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria.  相似文献   

2.
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected.  相似文献   

3.
The acute immobilized stress was studied for its effect on oxidation rate of [1-14C]palmitoyl-CoA, [1-14C]acetyl-CoA and [2-14C]pyruvate in mitochondria of the adrenals, liver and heart of rabbits. The stress effect on the energy metabolism of adrenals is associated with an increase of the rate of CO2 formation from pyruvate and with a decrease of the rate of CO2 formation from palmitoyl-CoA. Intensified oxidation of all substrates is observed in the heart mitochondria. The processes of beta-oxidation are more active in the liver. The data obtained evidence for differences in the mechanisms of energy metabolism reconstruction under acute stress in tissues with different functional specialization.  相似文献   

4.
5.
1. We present quantitative evidence from incorporation of [1-14C] acetate that the enzymes to synthesise isoprenoids are present in the marine sponge Amphimedon sp. and that efficient carotenoid synthesis takes place. 2. The de novo synthesis of b,b-carotene and (3R,3'R)-zeaxanthin may occur in a chlorophyll a-producing microalgal symbiont with subsequent aromatisation to (3R)-isoagelaxanthin by the sponge itself. 3. Amphimedon sp. contains nuclear-modified sterols derived by modification of conventional dietary sterols.  相似文献   

6.
7.
8.
9.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

10.
Slices of ripening seeds of the pea (Pisum sativum) were suppliedwith [1-14C] G and [6-14C] G, and the S.A. was determined ofthe respirod carbon dioxide, pyruvate, and the acids of theT.C.A.C. as well as that of the individual carbon atoms of citrateand malate. The possibility that there exist active and inactive pools ofthe T.C.A.C. acids in the pea is considered and, for most ofthe acids, rejected. The results cannot be explained on the bais of the T.C.A.C.because the S.A. of the carbon dioxide liberated was some tentimes higher than could have come from the malate via the T.C.A.C.,too much 14C accumulated in the cycle acids to have come frompyruvate by the operation of the T.C.A.C., and the patterrnof label in citrate and malate was different from that expected. An alternative explanation is put forward based on the oxidationof glucose by the P.P.P. and movement of 14C by a series ofrapid isotope exchange reactions.  相似文献   

11.
12.
13.
Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds.  相似文献   

14.
15.
Addition of [1-14C]acetate or [1,2-14C]acetate to actively growing cultures of Fusarium roseum 'Gibbosum' on rice yielded zearalenone with a specific activity ranging between 1.63 and 46.5 microCi/mmol.  相似文献   

16.
1. 26-Hydroxycholesterol was obtained by reducing the methyl ester of (±)-3β-hydroxycholest-5-en-26-oic acid, which was synthesized from 25-oxonorcholesterol. 2. Methods for preparing 7α-hydroxycholesterol and 7-dehydrocholesterol were modified to allow the micro-scale preparation of these [14C]sterols from [26-14C]-cholesterol. 3. 26-Hydroxycholesterol was oxidized more readily than 7α-hydroxycholesterol, 7-dehydrocholesterol or cholesterol by mitochondrial preparations from livers of mice, rats, guinea pigs, common toads (Bufo vulgaris) and Caiman crocodylus. 4. (±)-3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was oxidized very rapidly to 14CO2 by mouse and guinea-pig mitochondria without evident discrimination between the two optical isomers. 5. An enzyme system that oxidizes 26-hydroxycholesterol to 3β-hydroxycholest-5-en-26-oic acid was identified in the soluble extract of rat-liver mitochondria. This enzyme could use NADP in place of NAD but was not identical with liver alcohol dehydrogenase (EC 1.1.1.1). 6. [26-14C]Cholesteryl 3β-sulphate was not oxidized by fortified mouse-liver preparations that oxidized [26-14C]cholesterol to 14CO2.  相似文献   

17.
1. Rat thyroid lobes were incubated for various periods of time in Krebs–Ringer bicarbonate containing [3H]leucine and either [1-14C]galactose or [1-14C]mannose. Radioactivity in soluble proteins was determined after their separation by sucrose-gradient centrifugation. 2. The time-course of incorporation of label from [14C]-mannose into soluble thyroid proteins was parallel to that observed for [3H]leucine. There was a lag of at least 30min. before either label appeared in non-iodinated thyroglobulin (protein 17–18s). During this time both labels were detected in two fractions known to contain subunit precursors of thyroglobulin (fractions 12s and 3–8s). Radioactivity from double-labelled fractions 12s and 3–8s was transferred to protein 17–18s during subsequent incubation in an unlabelled medium. 3. In contrast, most of the [14C]galactose was immediately incorporated into protein 17–18s. 4. During the first hour of incubation, puromycin almost completely inhibited the incorporation of label from [3H]leucine and [14C]mannose into all protein fractions, but had little effect on the incorporation of [14C]galactose into protein 17–18s. 5. These results indicate that mannose is incorporated into the carbohydrate groups of protein 17–18s at an earlier stage in its formation than galactose. It is suggested that the synthesis of the carbohydrate groups of ghyroglobulin begins soon after formation of the polypeptide components, more than 30min. before these are aggregated to protein 17–18s; carbohydrate synthesis then proceeds in a stepwise manner, galactose being incorporated at about the time of aggregation of subunits to protein 17–18s. Most, if not all, the carbohydrate is added to thyroglobulin before it is iodinated.  相似文献   

18.
The production of 14CO2 from l-[1-14C]fucose and d-[1-14C]arabinose has been studied in five mammalian species.Cats, guinea pigs, mice, and rabbits respired about 22% of the label of l[1-14C]fucose or of d-[1-14C]arabinose within 6 h after intraperitoneal injection of the sugar. Rats respired only 1.5% of the l-fucose label and 5% of the d-arabinose label in the same time period.Liver homogenates from cat, guinea pig, and rabbit produced significantly more 14CO2 from l-[1-14C]fucose or d-[1-14C]arabinose than mouse or rat liver homogenates. Unlike those of the other species, guinea pig liver homogenates had very low l-fucose dehydrogenase activity.The results suggest that substantial catabolism of l-fucose and d-arabinose occurs in the tissues of some animal species. Investigators wishing to employ l-fucose as a tracer of glycoprotein metabolism must, therefore, ensure that the species that they employ does not metabolize l-fucose to products interfering with their studies.  相似文献   

19.
[1,2-(3)H(2)]Cholecalciferol has been synthesized with a specific radioactivity of 508mCi/mmol by using tristriphenylphosphinerhodium chloride, the homogeneous hydrogen catalyst. With doses of 125ng (5i.u.) of [4-(14)C,1-(3)H(2)]cholecalciferol the tissue distribution in rachitic rats of cholecalciferol and its metabolites (25-hydroxycholecalciferol and peak P material) was similar to that found in chicken with 500ng doses of the double-labelled vitamin. The only exceptions were rat kidney, with a very high concentration of vitamin D, and rat blood, with a higher proportion of peak P material, containing a substance formed from vitamin D with the loss of hydrogen from C-1. Substance P formed from [4-(14)C,1,2-(3)H(2)]cholecalciferol retained 36% of (3)H, the amount expected from its distribution between C-1 and C-2, the (3)H at C-1 being lost. 25-Hydroxycholecalciferol does not seem to have any specific intracellular localization within the intestine of rachitic chicks. The (3)H-deficient substance P was present in the intestine and bone 1h after a dose of vitamin D and 30min after 25-hydroxycholecalciferol. There was very little 25-hydroxycholecalciferol in intestine at any time-interval, but bone and blood continued to take it up over the 8h experimental period. It is suggested that the intestinal (3)H-deficient substance P originates from outside this tissue. The polar metabolite found in blood and which has retained its (3)H at C-1 is not a precursor of the intestinal (3)H-deficient substance P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号