首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

3.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

4.
Major histocompatibility complex class II (MHC II) molecules are targeted to endocytic compartments, known as MIIC, by the invariant chain (Ii) that is degraded upon arrival in these compartments. MHC II acquire antigenic fragments from endocytosed proteins for presentation at the cell surface. In a unique and complex series of reactions, MHC II succeed in exchanging a remaining fragment of Ii for other protein fragments in subdomains of MIIC before transport to the cell surface. Here, the mechanisms regulating loading and intracellular trafficking of MHC II are discussed.  相似文献   

5.
S Carson 《Nucleic acids research》1991,19(18):5007-5014
The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus.  相似文献   

6.
Due to their unique capacity to self-renew and for multiple differentiation, stem cells are considered promising candidates for cell replacement therapy in many devastating diseases. However, studies on immune rejection, which is a major problem facing successful stem cell therapy, are rare. In this study, we examined MHC expression in the M13SV1 cell line, which has previously been shown to have stem cell properties and to be non-tumorigenic, in order to determine whether human adult stem cells might be rejected after transplantation. Our results show low expression levels of MHC class I molecules on the surface of these cells. An induction of MHC class I expression was observed when the cells were treated with IFN-gamma. Maximal induction of MHC class protein expression was observed at 48 h after treatment with concentrations above 5 ng/ml of IFN-gamma. Elevated MHC class I levels were sustained for 72 h after withdrawing IFN-gamma. Therefore, we introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce MHC class I expression on the cell surface after infection, into M13SV1 cells. Cells transfected with the hCMV US2, US3, US6 or US11 genes exhibited a reduction (40-60%) of MHC class I expression compared with mock-transfected cells. These results suggest that human adult stem cells are capable of expressing high levels of MHC class I proteins, and thus may be rejected on transplantation unless they are modified. In addition, viral stealth mechanisms can be exploited for stem cell transplantation.  相似文献   

7.
Major histocompatibility complex class II protein (MHC II) molecules present antigenic peptides to CD4-positive T-cells. Efficient T cell stimulation requires association of MHC II with membrane microdomains organized by cholesterol and glycosphingolipids or by tetraspanins. Using detergent extraction at 37 degrees C combined with a modified flotation assay, we investigated the sequence of events leading to the association of MHC II with cholesterol- and glycosphingolipid-rich membranes (DRMs) that are distinct from tetraspanins. We find two stages of association of MHC II with DRMs. In stage one, complexes of MHC II and invariant chain, a chaperone involved in MHC II transport, enter DRMs in the Golgi stack. In early endosomes, these complexes are almost quantitatively associated with DRMs. Upon transport to late endocytic compartments, MHC II-bound invariant chain is stepwise proteolyzed to the MHC class II-associated invariant chain peptide (CLIP) that remains MHC II-bound and retains a preference for DRMs. At the transition between the two stages, CLIP is exchanged against processed antigens, and the resulting MHC II-peptide complexes are transported to the cell surface. In the second stage, MHC II shows a lower overall association with DRMs. However, surface MHC II molecules occupied with peptides that induce resistance to denaturation by SDS are enriched in DRMs relative to SDS-sensitive MHC II-peptide complexes. Likewise, MHC II molecules loaded with long-lived processing products of hen-egg lysozyme containing the immunodominant epitope 48-61 show a very high preference for DRMs. Thus after an initial mainly intracellular stage of high DRM association, MHC II moves to a second stage in which its preference for DRMs is modulated by bound peptides.  相似文献   

8.
The total number of cell surface glycoprotein molecules at the plasma membrane results from a balance between their constitutive internalization and their egress to the cell surface from intracellular pools and/or biosynthetic pathway. Constitutive internalization is net result of constitutive endocytosis and endocytic recycling. In this study we have compared spontaneous internalization of murine major histocompatibility complex (MHC) class I molecules (K(d), D(d), full L(d), and empty L(d)) after depletion of their egress to the cell surface (Cycloheximide [CHX], brefeldin A [BFA]) and internalization after external binding of monoclonal antibody (mAb). MHC class I alleles differ regarding their cell surface stability, kinetics, and in the way of internalization and degradation. K(d) and D(d) molecules are more stable at the cell surface than L(d) molecules and, thus, constitutively internalized more slowly. Although the binding of mAbs to cell surface MHC class I molecules results in faster internalization than depletion of their egress, it is still slow and, thereby, can serve as a model for tracking of MHC class I endocytosis. Internalization of fully conformed MHC class I molecules (K(d), D(d), and L(d)) was neither inhibited by chlorpromazine (CP) (inhibitor of clathrin endocytosis), nor with filipin (inhibitor of lipid raft dependent endocytosis), indicating that fully conformed MHC class I molecules are internalized via the bulk pathway. In contrast, internalization of empty L(d) molecules was inhibited by filipin, indicating that non-conformed MHC class I molecules require intact cholesterol-rich membrane microdomains for their constitutive internalization. Thus, conformed and non-conformed MHC class I molecules use different endocytic pathways for constitutive internalization.  相似文献   

9.
Dendritic cells (DCs) express major histocompatibility complex class II (MHC II) to present peptide antigens to T cells. In immature DCs, which bear low cell surface levels of MHC II, peptide-loaded MHC II is ubiquitinated. Ubiquitination drives the endocytosis and sorting of MHC II to the luminal vesicles of multivesicular bodies (MVBs) for lysosomal degradation. Ubiquitination of MHC II is abrogated in activated DCs, resulting in an increased cell surface expression. We here provide evidence for an alternative MVB sorting mechanism for MHC II in antigen-loaded DCs, which is triggered by cognately interacting antigen-specific CD4+ T cells. At these conditions, DCs generate MVBs with MHC II and CD9 carrying luminal vesicles that are secreted as exosomes and transferred to the interacting T cells. Sorting of MHC II into exosomes was, in contrast to lysosomal targeting, independent of MHC II ubiquitination but rather correlated with its incorporation into CD9 containing detergent-resistant membranes. Together, these data indicate two distinct MVB pathways: one for lysosomal targeting and the other for exosome secretion.  相似文献   

10.
LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.  相似文献   

11.
NK cells resist engraftment of syngeneic and allogeneic bone marrow (BM) cells lacking major histocompatibility (MHC) class I molecules, suggesting a critical role for donor MHC class I molecules in preventing NK cell attack against donor hematopoietic stem and progenitor cells (HSPCs), and their derivatives. However, using high-resolution in vivo imaging, we demonstrated here that syngeneic MHC class I knockout (KO) donor HSPCs persist with the same survival frequencies as wild-type donor HSPCs. In contrast, syngeneic MHC class I KO differentiated hematopoietic cells and allogeneic MHC class I KO HSPCs were rejected in a manner that was significantly inhibited by NK cell depletion. In vivo time-lapse imaging demonstrated that mice receiving allogeneic MHC class I KO HSPCs showed a significant increase in NK cell motility and proliferation as well as frequencies of NK cell contact with and killing of HSPCs as compared to mice receiving wild-type HSPCs. The data indicate that donor MHC class I molecules are required to prevent NK cell-mediated rejection of syngeneic differentiated cells and allogeneic HSPCs, but not of syngeneic HSPCs.  相似文献   

12.
Intrabodies (IB) are suitable tools to down-regulate the expression of cell surface molecules in general. In this work, the appearance of major histocompatibility (MHC) class I molecules on the cell surface could be prevented by the expression of intracellularly localized anti-MHC class I antibodies. The expression of MHC antigens presenting intracellularly synthetised peptides on the cell surface is the predominant reason for immunologic detection and rejection of allogeneic cell and tissue transplants. Allogeneic keratinocyte sheets might be a suitable tool for skin grafting. Within this study primary rat keratinocytes have been transfected with anti-MHC I-IB. Strong IB-expressing cells showed a MHC I "knockout" phenotype. The cells did not exhibit any significant alterations compared to non-transfected cells: the cell growth and the expression of other surface molecules were unaltered. Merely an enhanced intracellular accumulation of MHC I molecules could be detected. Notably, IB-expressing keratinocytes displayed a reduced susceptibility to allogeneic cytotoxic T cells in vitro compared to unmodified cells with a normal level of MHC I surface expression. These MHC I-deficient keratinocytes might be utilized in tissue-engineered allogeneic non-immunogeneic skin transplants. The principle of MHC class I manipulation in general can be used for other allogeneic cell and tissue-engineered transplants as well.  相似文献   

13.
Natural killer T (NKT) cells are positively selected on cortical thymocytes expressing the non-classical major histocompatibility complex (MHC) class I CD1d molecules. However, it is less clear how NKT cells are negatively selected in the thymus. In this study, we investigated the role of MHC class II expression in NKT cell development. Transgenic mice expressing MHC class II on thymocytes and peripheral T cells had a marked reduction in invariant NKT (iNKT) cells. Reduced numbers of iNKT cells correlated with the absence of in vivo production of cytokines in response to the iNKT cell agonist alpha-galactosylceramide. Using mixed bone marrow chimeras, we found that MHC class II-expressing thymocytes suppressed the development of iNKT cells in trans in a CD4-dependent manner. Our observations have significant implications for human iNKT cell development as human thymocytes express MHC class II, which can lead to an inefficient selection of iNKT cells.  相似文献   

14.
15.
Expression of mouse major histocompatibility complex (MHC) class I molecules in different cell lines derived from Syrian hamsters has revealed antigen presentation deficiencies of some H2 allelic products in two cell lines (BHK and NIL-2) which were overcome by transient expression of the rat transporter associated with antigen processing (TAP; Lobigs et al. 1995). Here we show that in both cell lines the endogenous MHC class I cell surface expression was completely down-regulated. Lymphokine treatment induced endogenous and recombinant mouse MHC class I cell surface expression to levels similar to that in other Syrian hamster cell lines competent for antigen presentation through transduced H2 molecules. Accordingly, constitutive downregulation of expression of accessory molecules of the MHC class I pathway can reveal differences between H2 class I alleles in antigen presentation not encountered when the expression levels are augmented. In addition to the differential expression of MHC class I pathway genes, two cell lines representing competent (FF) and defective (BHK) antigen presentation phenotypes for mouse class I MHC restriction elements demonstrated substantial sequence polymorphism in Tap1 but not Tap2. Cytokine-treated FF or BHK cells and human TAP-deficient T2 cells transfected with FF or BHK TAP1 in combination with FF TAP2 differed in their preference for C-terminal peptide residues, as shown by an in vitro peptide transport assay. Thus, polymorphic residues in TAP1 can influence the substrate selectivity of the Syrian hamster peptide transporter.  相似文献   

16.
Our lab has demonstrated that encephalitogenic T cells can be effectively anergized by treatment with MHC variant peptides, which are analogues of immunogenic peptides containing an amino acid substitution at an MHC anchor residue. The MHC variant peptide of myelin oligodendrocyte glycoprotein (MOG)(35-55) proves an effective treatment as it does not induce symptoms of experimental autoimmune encephalomyelitis and fails to recruit macrophages or MOG(35-55)-specific T cells to the CNS. In this study, we sought to characterize the signaling pathways required for the induction of anergy by building upon the observations identifying the tyrosine phosphatase SHP-1 as a critical regulator of T cell responsiveness. Motheaten viable heterozygous mice, which contain a mutation in the SHP-1 gene resulting in a reduction in functional SHP-1, were challenged with MOG(35-55) or the MOG(35-55) MHC variant 45D. These mice display symptoms of experimental autoimmune encephalomyelitis upon immunization with MHC variant peptide and have significant CNS infiltration of tetramer-positive CD4(+) cells and macrophages, unlike B6 mice challenged with the variant peptide. The effects of SHP-1 are directly on the T cell as Motheaten viable heterozygous mice autoreactive T cells are not anergized in vitro. Lastly, we demonstrate no distinguishable difference in the initial interaction between the TCR and agonist or MHC variant. Rather, an unstable interaction between peptide and MHC attenuates the T cell response, seen in a decreased half-life relative to MOG(35-55). These results identify SHP-1 as a mediator of T cell anergy induced by destabilized peptide:MHC complexes.  相似文献   

17.
18.
Major histocompatibility complex (MHC) class I molecules present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. MHC-bound peptides are critical for the stability of the MHC complex, and standard strategies for the production of recombinant MHC complexes are based on in vitro refolding reactions with specific peptides. This strategy is not amenable to high-throughput production of vast collections of MHC molecules. We have developed conditional MHC ligands that form stable complexes with MHC molecules but can be cleaved upon UV irradiation. The resulting empty, peptide-receptive MHC molecules can be charged with epitopes of choice under native conditions. Here we describe in-depth procedures for the high-throughput production of peptide-MHC (pMHC) complexes by MHC exchange, the analysis of peptide exchange efficiency by ELISA and the parallel production of MHC tetramers for T-cell detection. The production of the conditional pMHC complex by an in vitro refolding reaction can be achieved within 2 weeks, and the actual high-throughput MHC peptide exchange and subsequent MHC tetramer formation require less than a day.  相似文献   

19.
Human cytomegalovirus (HCMV) encodes several proteins that inhibit major histocompatibility complex (MHC) class I-dependent antigen presentation. The HCMV products US2 and US11 are each sufficient for causing the dislocation of human and murine MHC class I heavy chains from the lumen of the endoplasmic reticulum to the cytosol, where the heavy chains are readily degraded. The apparent redundancy of US2 and US11 has been probed predominantly in cultured cell lines, where differences in their specificities were shown for murine and human MHC class I locus products. Here, we expressed US11 and US2 via adenovirus vectors and show that US11 exhibits a superior ability to degrade MHC class I molecules in primary human dendritic cells. MHC class II complexes are unaffected by US2- and US11-mediated attack. We suggest that multiple HCMV-encoded immunoevasions have evolved complementary functions in response to diverse host cell types and tissues.  相似文献   

20.
The major histocompatibility complex (MHC) peptide repertoire of cancer cells serves both as a source for new tumor antigens for development of cancer immunotherapy and as a rich information resource about the protein content of the cancer cells (their proteome). Thousands of different MHC peptides are normally displayed by each cell, where most of them are derived from different proteins and thus represent most of the cellular proteome. However, in contrast to standard proteomics, which surveys the cellular protein contents, analyses of the MHC peptide repertoire correspond more to the rapidly degrading proteins in the cells (i.e. the transient proteome). MHC peptides can be efficiently purified by affinity chromatography from membranal MHC molecules, or preferably following transfection of vectors for expression of recombinant soluble MHC molecules. The purified peptides are resolved and analyzed by capillary high-pressure liquid chromatography-electrospray ionization-tandem mass spectrometry, and the data are deciphered with new software tools enabling the creation of large databanks of MHC peptides displayed by different cell types and by different MHC haplotypes. These lists of identified MHC peptides can now be used for searching new tumor antigens, and for identification of proteins whose rapid degradation is significant to cancer progression and metastasis. These lists can also be used for identification of new proteins of yet unknown function that are not detected by standard proteomics approaches. This review focuses on the presentation, identification and analysis of MHC peptides significant for cancer immunotherapy. It is also concerned with the aspects of human proteomics observed through large-scale analyses of MHC peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号