首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contractile roots of Hyacinthus orientalis L. cv ‘Pink Pearl’ shorten as a result of growth of inner cortical cells which expand radially and contract longitudinally. Brief treatment with IAA (indole-3-acetic acid—0.5 and 1.0 mg/1) induces subapical swelling, root cap proliferation and decreased rates of elongation in potentially contractile roots. Growth resumes with removal of IAA from the culture medium and contraction subsequently occurs. The pattern of subsequent contraction is affected by prior IAA treatment; contraction occurs in the normal manner both acropetal and basipetal to the points of IAA-induced swelling, but does not occur in the swollen region itself. Microscopic examination of the swollen region reveals that cells of the middle and outer cortex are radially expanded and longitudinally shortened relative to middle and outer cortical cells of contracted and uncontracted portions of the same root and control roots. In contrast, inner cortical cells in swollen regions of IAA-treated roots show approximately 50% less radial expansion than inner cortical cells of control contracted roots. Middle and outer cortical cells in the swollen region of IAA-treated roots undergo radial expansion, while middle and outer cortical cells in adjacent contracting zones are compressed by radially expanding inner cortical cells. Average volumes of cortical cells in the IAA-induced swollen region increased approximately two-fold when contraction occurred in adjacent regions. These results suggest that in hyacinth roots, under certain circumstances, inner and outer cortical cells alike possess the ability for growth reorientation and expansion. However, during the usual course of contractile root development, cells of the outer cortex are restricted in this ability, through an as yet unknown mechanism, and are passively compressed by the radially expanding inner cortical cells.  相似文献   

2.
The Contractile Roots of Narcissus   总被引:1,自引:0,他引:1  
CHEN  S. 《Annals of botany》1969,33(3):421-426
All the tissues in the contracted region of the contractileroot of Narcissus become adjusted to the shortening of the root,which is brought about by vertical contraction and radial expansionof the inner cortical cells. Consequently the outer cortex includingthe exodermis is lifted passively in large wrinkles over thesurface, while the vertical walls of cells in the stele becomeundulated or indented as in the case of the vessels. These phenomenaare primarily brought about by the mechanical process of liftingand pulling due to the shortening and radial expansion of theinner cortical tissue. The possible mechanism of contractionof this cortical tissue is discussed.  相似文献   

3.
Rhizobia induce the formation of root nodules on the roots of leguminous plants. In temperate legumes, nodule organogenesis starts with the induction of cell divisions in regions of the root inner cortex opposite protoxylem poles, resulting in the formation of nodule primordia. It has been postulated that the susceptibility of these inner cortical cells to Rhizobium nodulation (Nod) factors is conferred by an arrest at a specific stage of the cell cycle. Concomitantly with the formation of nodule primordia, cytoplasmic rearrangement occurs in the outer cortex. Radially aligned cytoplasmic strands form bridges, and these have been called preinfection threads. It has been proposed that the cytoplasmic bridges are related to phragmosomes. By studying the in situ expression of the cell cycle genes cyc2, H4, and cdc2 in pea and alfalfa root cortical cells after inoculation with Rhizobium or purified Nod factors, we show that the susceptibility of inner cortical cells to Rhizobium is not conferred by an arrest at the G2 phase and that the majority of the dividing cells are arrested at the G0/G1 phase. Furthermore, the outer cortical cells forming a preinfection thread enter the cell cycle although they do not divide.  相似文献   

4.
The pattern of loss of nuclear integrity in the epidermis andcortex of maize adventitious roots was examined during (1) non-pathogeniccortical senescence associated with root ageing, and (2) lysigenousaerenchyma formation, to determine whether these phenomena arerelated. Nuclear integrity was estimated by counting the percentageof cells with nuclei detectable by acridine orange fluorescence. In roots of both soil-grown (90 d) and solution-grown (19 d)plants, nuclei were lost progressively, from the epidermis andfrom successively deeper cortical cell layers, with increasingdistance behind the root tips; this occurred irrespective ofthe degree of aeration in solution culture, and independentlyof aerenchyma formation. Aerenchyma developed in soil-grownplants and in sub-ambient oxygen concentrations (<5 kPa partialpressure) in solution culture. It started to form in the middlecortex and coincided with a marked loss of nuclear stainingin the inner cortex, especially in the innermost cortical celllayer next to the endodermis, but not in the remaining cellsof the middle cortex. Two distinct patterns of nuclear deletionfrom the cortex were thus demonstrated; they occurred independentlybut simultaneously in some conditions. These findings are discussed in relation to mechanisms of celldeath, and the metabolic status of root cortical cells participatingin ion transport to the xylem. Zea mays L., maize, roots, aerenchyma, cell death, nuclei  相似文献   

5.
Baluska F  Hauskrecht M  Barlow PW  Sievers A 《Planta》1996,198(2):310-318
The spatio-temporal sequence of cellular growth within the post-mitotic inner and outer cortical tissue of the apex of the primary root of maize (Zea mays L.) was investigated during its orthogravitropic response. In the early phase (0–30 min) of the graviresponse there was a strong inhibition of cell lengthening in the outer cortex at the lower side of the root, whereas lengthening was only slightly impaired in the outer cortex at the upper side. Initially, inhibition of differential cell lengthening was less pronounced in the inner cortex indicating that tissue tensions which, in these circumstances, inevitably develop at the outer-inner cortex interface, might help to drive the onset of the root bending. At later stages of the graviresponse (60 min), when a root curvature had already developed, cells of the inner cortex then exhibited a prominent cell length differential between upper and lower sides, whereas the outer cortex cells had re-established similar lengths. Again, tissue tensions associated with the different patterns of cellular behaviour in the inner and outer cortex tissues, could be of relevance in terminating the root bending. The perception of gravity and the complex tissue-specific growth responses both proceeded normally in roots which were rendered devoid of microtubules by colchicine and oryzalin treatments. The lack of involvement of microtubules in the graviresponse was supported by several other lines of evidence. For instance, although taxol stabilized the cortical microtubules and prevented their re-orientation in post-mitotic cortical cells located at the lower side of gravistimulated roots, root bending developed normally. In contrast, when gravistimulated roots were physically prevented from bending, re-oriented arrays of cortical microtubules were seen in all post-mitotic cortical cells, irrespective of their position within the root.Abbreviations CMTs cortical microtubules - CW Cholodny-Went - FF form factor - MT microtubule The research was supported by a fellowship from the Alexander von Humboldt Stiftung (Bonn, Germany) to F.B. Financial support to AGRAVIS by Deutsche Agentur für Raumfahrtangelegenheiten (DARA, Bonn) and Ministerium für Wissenschaft und Forschung (Düsseldorf) is gratefully acknowledged. IACR receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.  相似文献   

6.
The effect of high pH on the morphology and anatomy of the rootsof lupin (Lupinus angustifolius L. cv. Yandee) and pea (Pisumsativum L. cv. Dundale) was examined in buffered solution. Themorphology and anatomy of lupin roots were markedly altered,and root growth was reduced by increasing solution pH from 5·2to 7·5, whereas pea roots were unaffected. In lupin roots,pH 7·5 caused disintegration of the root surface andimpaired root hair formation. Lupin roots grown at pH 7·5also had decreased cell lengths but increased cell diameterin both the epidermis and the cortex in comparison to rootsgrown at pH 5·2. High pH reduced cell volume greatlyin the epidermis, to a lesser extent in the outer cortex andnot at all in the inner cortex. It appears that in lupins, theprimary detrimental effects of growth at pH 7·5 is reducedlongitudinal growth of cells near the root surface with a consequentreduction in elongation of the cells in inner cortex.Copyright1993, 1999 Academic Press Lupinus angustifolius L., Pisum sativum L., high pH, root morphology, root anatomy  相似文献   

7.
The occurrence of species of the cyanophytes Nostoc and Anabaenain the cortex near the algal zone is reported for apogeotropicroots of Macrozamia communis L. Johnson. Algae were found tooccur both intercellularly and intracellularly in cells of theinner and outer cortex. This is the first record of intracellularalgae in the cycads and only the second report of this phenomenonin vascular plants. By examination of cells at various stagesof invasion by algae, it is interpreted that algal invasionof cortical cells and intercellular spaces is preceded by mucusapparently secreted by algal zone cells of the host, and depositedin intercellular spaces of cortical parenchyma cells nearby.Also algal penetration of cortical cells is preceded by an algalinvasion front of finely granular mucal material which bypassesmucus already deposited in intercellular spaces and may eitherlyse part of the host cell wall or enter through the plasmo-desmata,filling much of the cell cavity. Subsequently, large numbersof the algal symbionts enter the cell and may be enclosed withinhost wall material. Electron microscopic techniques are nowbeing employed to further clarify these invasion processes.  相似文献   

8.
Root contraction is effected in many species by redirected growthof parenchyma cells, supplemented in some cases by other processes.In Hyacinthus, root contraction is associated with the growthof inner cortical cells, which after becoming fully elongatedin the normal growth of the root, then expand radially and contractlongitudinally. The contraction is, however, a growth process,since it occurs in turgid tissue and is partly reversible byplasmolysis. Moreover, the radial walls of the cells concernedincrease in area and the cells increase in volume. The changes in cell shape associated with contraction involvechanges in cell-wall structure which, in so far as they aredetectable by polarization microscopy, are described and discussedin the light of current views on cell-wall growth.  相似文献   

9.
Radicles and adventitious roots of the soap plant are contractile and through their activity, mature bulbs of this species are buried to depths of 20–30 cm. Experiments were performed to determine rates of contraction and displacement of the shoot apex resulting from activity of the contractile radicle and the first several adventitious roots. The average displacement was 23.2 mm over a 10-wk period and 63.8 mm over 29 weeks. Small glass beads and abortive seeds served as controls and showed no displacement through the soil column. Measurements from longitudinal and transverse sections of contracted and uncontracted portions of radicles revealed average increases of 26–64% in radial dimensions and 40–56% decreases in longitudinal dimensions of inner and middle cortical cells (excluding the endodermis) following contraction. Cells of the outermost cortex (excluding the exodermis) decreased in average longitudinal dimensions by 18–26% before becoming distorted and collapsed as contraction was completed. Average volumes of innermost cortical cells decreased by 15–54%, while two or three cell layers of the middle cortex, adjacent to collapsed outer cortical cells, increased in volume up to 75%. These middle cortical cells are identified as the “active” cells which, by their growth, are responsible for the shortening of the root. Throughout the process of contraction, the stele remains straight and undistorted, although the closer spacing of tracheary element secondary wall thickenings following contraction suggests longitudinal compression of the stele. The average number of cortical cells per transverse section does not differ in contracted and uncontracted roots and no evidence is found to support the “interdigitation” hypothesis of root contraction. However, reorientation of middle cortical cell expansion may be the mechanism of root contraction in Chlorogalum pomeridianum.  相似文献   

10.
Changes in shape and size of Robinia pulvinar cortical cellsin relation to leaflet movements have been investigated usingan image processing system applied to drawings of transverseand longitudinal pulvinar sections. Both the size and shapeof cell sections underwent change during movement. The dorsal-leftside region of the cortex has been characterized as the extensorregion which increases turgor during opening. Morphometric changesoccur throughout the cortical motor cells except in the threeor four inner layers. K, Cl, S, and Ca distribution in cellwalls and protoplasts of inner and outer motor cells have beenmeasured with X-ray microanalysis. The distribution patternof K and Cl shows that these ions are mainly responsible forturgor changes. K and Cl were simultaneously depleted in apoplastand protoplast, which suggests that cell walls do not possessa high enough ionic reservoir during Robinia leaflet movements.Ca was always higher in flexor cell walls than in extensor regionsof closed pulvini. This fact could be related to a lower abilityto extend of flexor cells which underwent fewer morphomerticchangrs during movement.  相似文献   

11.
Detailed morphometric analysis of cell shapes and an immunofluorescent study of microtubules were carried out on primary roots of Zea mays L. Two types of cells were found to be formed within the postmitotic isodiametric growth (PIG) region of the root cortex that were differentially responsive to low level of exogenous ethylene. The innermost and central cell rows of the cortex were sensitive to ethylene treatment and showed a disturbed distribution of cortical microtubules (CMTs) as well as changed polarity of cell growth, whereas the 2–3 outermost cell rows were less sensitive in this respect. This suggests that post-mitotic cells of the inner cortex are specific targets for ethylene action. These properties of the inner cortex are compatible with its cells being involved in the formation of aerenchyma; they may also favour root growth in compacted soil. By contrast, the specific properties of the outer cortex indicate that this tissue domain is necessary for the gaseous impermeability and the mechanical strengthening of subjacent aerenchymatous cortex, especially in the mature region of the root. Ethylene affected neither the pattern of cortical cell expansion in the meristem nor the position of the PIG region with respect to the root tip. This contrasts with gibberellin-deficiency which affected these parameters in both parts of the cortex. These observations indicate a fundamental difference between the role of these two phytohormones in the morphogenesis and development of maize roots.  相似文献   

12.
Patterns of root cortex cell development and ultrastructurewere analysed in Sagittaria lancifolia L., Thalia geniculataL. and Pontederia cordata L. using scanning and transmissionelectron microscopy (SEM, TEM). In all three species, cortexcells were arranged in radial columns extending from the endodermisto the hypodermis/epidermis. During gas space formation, thecortex cells elongated parallel to the root radius and shrankin the plane perpendicular to the radius leaving long and thinrows of cortex cells extending from the endodermis to the epidermis.Although the cortex cells appeared collapsed in tissue withwell-developed gas spaces, TEM revealed that the cortical cellsas well as the epidermal cells maintained intact membranes andmany normal organelles. Formation of root cortex tissue withwell-developed gas spaces does not require cell death in thesespecies. Living cortex cells in root tissue with mature gasspaces could provide a symplastic pathway for transport betweenthe root stele and the living epidermal cells. Copyright 2000Annals of Botany Company Sagittaria lancifolia, Thalia geniculata, Pontederia cordata, aerenchyma, root, wetland, development  相似文献   

13.
Some Observations on Infection of Arachis hypogaea L. by Rhizobium   总被引:2,自引:0,他引:2  
The infection process in Arachis hypogaea by rhizobia differsfrom that normally found in Trifolium spp. in that no infectionthreads are formed. The root hairs, which are long (up to 4mm), septate, and often with large basal cells, occur only atthe sites of emerging lateral roots. Infection occurs only wherethe root hairs have large basal cells. Rhizobia cause curlingand deformation of the root hairs (as in Trifolium spp.) butenter the root at the junction of the root hair and the epidermaland cortical cells. The bacteria are distributed intercellularlyvia the middle lamellae and enter the cortical cells throughthe structurally altered cell wall, often close to the hostcell nucleus. The root hairs and large basal cells become infectedin the same way. Within the cortical cells of the emerging lateralroot the rhizobia multiply rapidly and the invaded cells dividerepeatedly to form the nodule tissue. Bacteriod formation occursonly when the host cell ceases to divide.  相似文献   

14.
The root apical meristem of Asplenium bulbiferum Forst. f. has a prominent four-sided pyramidal cell with its base in contact with the rootcap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The rootcap has its origin from the fourth (distal) face of the apical cell. The first division in a proximal merophyte is periclinal to the root surface, separating an outer cell and an inner cell. The outer cell is the origin of the outer part of the cortex and the epidermis; the larger inner cell is the origin of the inner cortex, endodermis, pericycle, and vascular tissue. After the establishment of the basic number of cells in a unilayered merophyte, the cells undergo transverse divisions forming longitudinal files of cells. The mitotic index of the apical cell indicates that it is not a quiescent cell. Also, the first plane of division in a newly formed merophyte dictates that the apical cell is the originator of merophytes.  相似文献   

15.
Parts of the flagellar apparatus both inside and outside thecell have been investigated in a preliminary way by sectionsand whole mounts. Zoospores from male plants of O. cardiacumpossess about 120 flagella, the bases of which are held togetherin a ring by means of a characteristically patterned fibrousband and some differently arranged more homogeneous material.Between each pair of bases a compound root passes backwardsinto the cell. Each root has two radially superposed components:the outer component consists of three fibres starting at thefibrous ring and passing backwards close to the cell surface;the inner component is shorter and stouter, extending backwardsfor an uncertain distance but penetrating forward below thefibrous ring, to end within the substance of the colourlessapical dome of the cell. The material of the inner componentof a root displays a regular crossbanding of alternate thinand thicker lines spaced at approximately 140A for each unitof pattern (i.e. two lines). The orientation of the free partsof the flagella with respect to the fibrous ring is such thattheir two central strands when seen in cross-section near thebase are obliquely vertical.  相似文献   

16.
The morphology of root nodules formed on Lotus pedunculatusby two fast-growing strains of Rhizobium, NZP2037 which formseffective (nitrogen-fixing) nodules and NZP2213 which formsineffective (non-nitrogen-fixing) nodules, has been studied.The nodules formed by NZP2037 contained a central zone of bacteroid-filledplant cells surrounded by a cortex. In contrast the nodulesformed by NZP2213 contained no Rhizoblum-infected plant cells,but rhizobia were found in localized areas on the nodule surfaceand between the outer two or three cell layers of the nodule.Electron-dense osmiophilic deposits identified as flavolans(condensed tannins) were present in the vacuoles of many uninfectedplant cells in the nodules formed by both Rhizobium strains.This is the first time that flavolans have been positively identifiedin legume root nodules. In the NZP2037 nodule flavolans werepresent in the outer cortical and epidermal cells. In the ineffecitveNZP2213 nodule fiavolans were present in many of the centralnodule cells. The concentration of flavolan in the NZP2213 nodulewas 12 times higher than in the NZP2037 nodule.  相似文献   

17.
Domínguez LS  Sérsic A 《Mycologia》2004,96(5):1143-1151
Root morphology and anatomy of the myco-heterotrophic Arachnitis uniflora (Corsiaceae) were studied in relation to their association with a Glomus species (Glomeromycota). The mycorrhizal features were studied in three distinctive stages of development: (i) shoot and flower restricted to a small, underground bud; (ii) shoot and flower bud up to 1.5 cm; and (iii) shoot and flower already withered. The hyphae penetrate through and between the epidermal and exodermal cells; the exodermis and outer cortical cells become colonized in an inter- and intracellular manner, with some coils being formed in these layers. The fungi colonize the middle cortex, where intracellular vesicles in bundles are abundant. Arbuscules are formed profusely at very early stages of development, while in older stages they almost disappear and abundant vesicles are formed. Except for some details, the pattern of root colonization corresponds to a Paris-type. Presence of storage substances (starch and oil) also was recorded. Starch is produced and stored within root cells, mainly in the outer and inner root cortex. In senescent stages, plant and fungal tissues collapse.  相似文献   

18.
When the seminal root system of 14-day-old corn (Zea mays cv. Dekalb 202) was subjected to O2 stress, nodal roots with well developed cortical air spaces (aerenchyma) grew into the deoxygenated solution. Microscopic examination showed that there was extensive breakdown of cells in the midcortex of these roots, while the stele, endodermis, and inner layer of cortical cells remained complete, as did the outer layers of the cortex and the epidermis. Occasional files of intact cells, and the wall residues of collapsed cells, crossed the space between inner and outer cortex. Experiments with short, intact root segments with and without air spaces showed that in the presence of O2 the ability to absorb and translocate 86Rb+, per unit volume or length of root, was little affected by cortical degeneration. The distribution across root sections of recently supplied strontium and rubidium, determined by electron microprobe analysis, indicated that in roots with air spaces the strands of wall residues bridging the cortex could be involved in maintaining the conduction of ions from the outer cortex up to the endodermis.  相似文献   

19.
Root explants of Brassica napus cultured in vitro form adventitiousshoots. The root buds originated at the base of the newly initiatedlateral root. Cells in association with the differentiatingphloem of the developing lateral roots were the sites for rootbud formation. A nodular mass of cytoplasmic cells developedby day 7 at the base of the lateral root. This group of cellscontinued to divide an enlarge. The cells in the peripheralregion of the nodular cell mass differentiated further intoa meristematic zone. The meristematic cells grew towards theperiphery of the cortex by crushing the outer layer of corticalcells. Further development of the meristematic layer resultedin the formation of shoot primordia with organized shoot apicalmeristems and leaf primordia.Copyright 1993, 1999 Academic Press Brassica napus, canola, cultured root segments, root buds  相似文献   

20.
Pea roots have open apical organization, where discrete initial cells do not exist. Differentiation of all tissues occurs in cylinders and vascular sectors that blend gradually with each other. This study reports the distribution of dividing cells and their relationship to maturation events in the 2 mm root tip, and in the 8–10 and 18–20 mm segments. Up to 200 μm from the root body/cap junction, cell division is uniformly distributed throughout all meristem regions. By 350 to 500 μ, xylem tracheary elements and cells of the pith parenchyma and middle cortex have stopped dividing. At this level cell division is almost entirely restricted to two cylinders, one composed of the inner root cap, the epidermis, and the outer cortex (outer cortex cylinder) and another composed of cells of the inner cortex, the pericycle and vascular tissue (inner cortex cylinder). When the protophloem matures, all cells in the phloem sector of the inner cortex cylinder, including the 1 layered pericycle, the endodermis and the phloem parenchyma, stop dividing. The 3–4 layered pericycle in the xylem sectors continues dividing until about 10 mm from the body/cap junction following the maturation of the protoxylem tracheary elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号