首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wilson’s disease, a genetic copper-overload condition, is currently treated with zinc because of the ability of zinc to induce metallothionein. We are interested in nonmetal chemicals that may alter intestinal copper metabolism and thus help to alleviate copper toxicity. Previously, we have shown that quercetin, a dietary flavonoid, can chelate copper. This study further examined the interaction of quercetin and copper in intestinal epithelial cells. We found that quercetin enhanced metallothoinein induction by copper and the effect was dose dependent. Quercetin also exerted a cumulative effect after repeated exposure. Repeated low-dose treatment (3–10 μM) of cells with quercetin can lead to the same effect on metallothoinein as one higher concentration treatment (100 μM). This property of quercetin is distinct from its chemical interaction with copper, but both can contribute to a reduction of copper toxicity. Among other flavonoids tested, two other copper chelators, catechin and rutin, did not increase copper induction of metallothionein, whereas genistein, an isoflavone that does not interact with copper chemically, increased copper induction of metallothionein. The effect of quercetin on copper metabolism is unique. Quercetin decreased zinc-stimulated metallothionein expression and had no effect on the cadmium induction of metallothionein. The clinical application of our observation needs to be explored.  相似文献   

2.
3.
A study was carried out on the uptake of copper, zinc, or cadmium ions and their induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells. The main difference between Menkes' and normal cells in the uptake of these metal ions was an increased uptake of copper ions in Menkes' cells at a low concentration of CuCl2 (2.1 microM). The CuCl2 concentration necessary to induce metallothionein synthesis in Menkes' cells was 50 microM, whereas that in normal cells was about 200 microM. The levels of zinc or cadmium ions needed to induce metallothionein in Menkes' cells were similar to those in normal cells. At least four isomers of metallothionein were induced by copper, zinc, and cadmium ions in both types of cells. Metallothionein synthesis in Menkes' and normal cells was induced when the amounts of intracellular copper reached a threshold level of approximately 0.2 nmol/10(6) cells, and the rate of metallothionein synthesis in these cells was increased as a function of the amounts of intracellular copper (0.2-1.7 nmol/10(6) cells). These results indicate that the induction of metallothionein synthesis in lymphoblastoid cells is controlled by the level of intracellular copper, suggesting that the major defect in Menkes' cells is not due to the abnormal regulation of metallothionein synthesis but to an alteration of the copper metabolism in cells by which the levels of intracellular copper become larger than those in normal cells and just lower than the threshold level for induction of metallothionein synthesis.  相似文献   

4.
Flavonoids are natural compounds found in food items of plant origin. The study examined systematically the interaction of structurally diverse dietary flavonoids with trace metal ions and the potential impact of dietary flavonoids on the function of intestinal cells. Spectrum analysis was first performed to determine flavonoid-metal interaction in the buffer. Among the flavonoids tested, genistein, biochanin-A, naringin, and naringenin did not interact with any metal ions tested. Members of the flavonol family, quercetin, rutin, kaempferol, flavanol, and catechin, were found to interact with Cu(II) and Fe(III). On prolonged exposure, quercetin also interacted with Mn(II). Quercetin at 1:1 ratio to Cu(II) completely blocked the Cu-dependent color formation from hematoxylin. When quercetin was added to the growth medium of cultured human intestinal cells, Caco-2, the level of metal binding antioxidant protein, metallothionein, decreased. The effect of quercetin on metallothionein was dose and time-dependent. Genistein and biochanin A, on the contrary, increased the level of metallothionein. The interaction between dietary flavonoids and trace minerals and the effect of flavonoids on metallothionein level imply that flavonoids may affect metal homeostasis and cellular oxidative status in a structure-specific fashion.  相似文献   

5.
6.
The antigenotoxic effects of estrogen and genistein (isoflavones) were compared by measuring the degree of protection against plasmid DNA strand breakage induced by peroxyl free radicals using the DNA strand scission assay with pBR322 DNA. Isoflavones decreased DNA strand breakage by AAPH radical treatment at the all of three concentrations tested (0.5, 1.0, 1.5 microg/ml) with the range of 89.5% to 99.6%. Compared to genistein, estrogen was not as effective as genistein showing 46.9% to 29.6% protection, and this protective effect was decreased as estrogen concentrations increased from 0.1 to 0.3 microg/ml. DNA ladder experiments showed that genistein induced apoptosis in cultured cell lines, whereas estrogen did not induce any apoptosis. The effects of cell signal trandsduction protein expression patterns were compared between estrogen and genistein. The increased expression of cyclin B1 by estrogen was tampered by genistein at the highest concentration. Antigenotoxic and antiproliferative effects of genistein shown in this study support the hypothesis that it has a chemopreventive effect against particular types of cancers.  相似文献   

7.
In this in vitro study, the hypothesis that the beneficial effects of dietary genistein on bone are through the modulation of the bone marker synthesis by osteoblastic MC3T3-E1 cells was tested, and the possible roles of estrogen receptors in the actions of genistein on osteoblastic cells were also examined. Interleukin-6 production was decreased 40% to 60% in osteoblastic cells treated with genistein from either day 8-16 or day 12-16, at dietarily achievable concentrations (10(-10) to 10(-8) M) (P<0.05). The mRNA expression of osteoprotegerin increased about 140% in cells treated from with genistein day 4-8 at a concentration of 10(-8) M (P<0.05). The ratio of estrogen receptor-alpha to beta expression increased 10-fold from day 0 to 12 of culture (P<0.05). Correlating with this time-dependent variation in estrogen receptor expression, treatments of 17beta-estradiol and genistein had opposite dose patterns on the ratio of estrogen receptor-alpha to beta expression following treatment from day 4 to 6 compared to from day 0 to 2. The addition of ICI-182,780, an estrogen receptor blocker, reduced the inhibitory effect of genistein on IL-6 production by 30-50%. In summary, these findings suggest that the beneficial skeletal effects of genistein, at dietarily achievable levels, appear to be mediated, at least in part, by interleukin-6 and osteoprotegerin, and estrogen receptors play important roles in the inhibition of interleukin-6 synthesis by genistein in osteoblastic MC3T3-E1 cells.  相似文献   

8.
In order to determine the cytotoxic or cytoprotective effect of the synthetic isoflavonoid genistein, we studied its effect on HeLa tumor cells, which contain estrogen alpha receptors and do not contain estrogen beta receptors. It was shown that the genistein concentration (IC 50 = 0.2 mM) at which the half maximal inhibition of the HeLa cell viability is achieved is ten times higher than the concentrations of tamoxifen and cisplatin, which are reference agents with a cytotoxic effect. At micromolar concentrations (0.1–10 µM) genistein decreased the cytotoxic effects of cisplatin and tamoxifen. We found the reduced Bax mRNA expression and increased Bcl-2 mRNA expression during incubation of the cells with genistein, which also indicates its cytoprotective anti-apoptotic effect. Genistein, even in high concentrations, had no effect on the membrane potential and calcium capacity of isolated mitochondria and did not activate the opening of the Ca2+-induced mitochondrial pore. Thus, the data show a protective effect of the isoflavonoid genistein on tumor cells.  相似文献   

9.
10.
Metallothioneins are a class of cysteine-rich and low molecular weight, metal-binding proteins that are inducible by a wide variety of agents, including metal ions, such as cadmium and zinc, glucocorticoid hormones, interferon, and tumor promoters. In an effort to delineate the regulation of the synthesis of the recently identified brain metallothionein-like protein, a study was undertaken to compare the induction of metallothionein in human neuroblastoma IMR-32 cells by zinc, cadmium, and dexamethasone using the human Chang liver cells as a control. Both cadmium (1 microM) and zinc (100 microM) significantly enhanced the incorporation of [35S]cysteine into metallothioneins isolated from both neuroblastoma and Chang liver cells. Dexamethasone in concentrations of 10 microM stimulated the synthesis of metallothionein in the Chang cells, whereas it had no effects on the synthesis of metallothionein in the neuroblastoma cells at concentrations ranging from 2.5--100 microM. The degree of stimulation of metallothionein synthesis in the Chang cells by cadmium and zinc was significantly higher than seen in neuroblastoma cells. The neuroblastoma IMR-32 exhibited less tolerance to the toxicity of both cadmium and zinc than the Chang cells, which may correlate with the inherent ability of these ions to induce metallothioneins in these dissimilar cells. The results of these studies are interpreted to indicate that the factors regulating the synthesis of metallothioneins in the Chang and neuroblastoma cells are not identical, suggesting also of the presence of dissimilar regulatory mechanisms in the liver and brain.  相似文献   

11.
HOXA10 is necessary for normal development of the Müllerian duct, and continued adult expression in the uterus is necessary for female fertility. HOXA10 expression is altered by diethylstilbestrol, leading to uterine anomalies. Other endocrine disruptors may potentially lead to reproductive anomalies or dysfunction by altering HOXA10 expression. Here we investigated the effect of isoflavones on HOXA10 expression after in utero or adult exposure in the mouse. Genistein, but not diadzein, regulated HOXA10 mRNA and protein expression in the adult mouse uterus. In contrast, in utero genistein or diadzein exposure had no lasting effect on HOXA10 expression in the exposed offspring. Reporter gene expression driven by the HOXA10 estrogen response element was increased in a dose-responsive manner by genistein, but not daidzein. Neither estrogen receptor-alpha nor estrogen receptor-beta binding to the HOXA10 estrogen response element was affected by genistein or daidzein. In utero exposure to isoflavones is unlikely to result in HOXA10-mediated developmental anomalies. Adult genistein exposure alters uterine HOXA10 expression, a potential mechanism by which this agent affects fertility.  相似文献   

12.
Metallothionein isoform expression by breast cancer cells   总被引:3,自引:0,他引:3  
Expression of metallothionein (MT) isoforms by a human breast cancer cell line, PMC42, which retains many characteristics of normal breast epithelial cells and expresses functional estrogen receptors, was examined because it has been proposed that human breast cancer cells which are estrogen receptor positive can be differentiated from those which are estrogen receptor negative, by failure to express MT-1E [J.A. Friedline, S.H. Garrett, S. Somji, J.H. Todd, D. A. Sens, Differential expression of the MT-1E gene in estrogen-receptor positive and -negative breast cancer cell lines, Am. J. Pathol. 152 (1998) 23-27]. Using RT-PCR, PMC42 cells were found to transcribe genes for the MT isoforms IE, IX and 2A but not 1A or 1H. In order to examine which of the expressed isoforms might protect against metal toxicity, the cells were challenged with high concentrations of zinc and copper. Using competitive RT-PCR, cells resistant to 500 microM zinc showed 7+/-2 fold (SD, n=3) increases in expression of MT-1X and 6+/-3 fold increases in expression of MT-2A compared to control cells in normal media. For cells resistant to 250 microM copper the corresponding increases were 37+/-13 and 60+/-20 fold, whilst for control cells treated with 250 microM copper for only 6 h, increases were 10+/-3 and 6+/-3 fold. There was only a low level of expression of MT-1E in untreated cells and but a >120 fold increase in copper- resistant cells. Thus estrogen receptor positive cells cannot, in general, be differentiated from estrogen receptor negative cells by failure to express MT-1E, as suggested by Friedline et al. (1998). Increased expression of MT-1E, as well as MT-1X and MT-2A, protects against metal toxicity in PMC42 breast cancer cells.  相似文献   

13.
14.
17-beta estradiol (17-beta E(2)) attenuates the expression of vascular cell adhesion molecule 1 (VCAM-1) in vivo at physiological levels (pg/ml), whereas supraphysiological concentrations of 17-beta E(2) (ng/ml) are required in vitro. We assessed whether a metabolite of estrogen, which could only be generated in vivo, might be a more potent inhibitor of VCAM-1 expression and thereby explain this discrepancy. We report here that 17-epiestriol, an estrogen metabolite and a selective estrogen receptor (ER) beta agonist, is approximately 400x more potent than 17-beta E(2) in suppressing tumor necrosis factor (TNF) alpha-induced VCAM-1 mRNA as well as protein expression in human umbilical vein endothelial cells. Genistein, an ERbeta agonist, at low concentrations (1 and 10 nm) also suppressed TNFalpha-induced VCAM-1 mRNA expression. These actions of 17-epiestriol and genistein were significantly attenuated in the presence of the estrogen receptor antagonist ICI-182780. Other estrogenic compounds such as ethinyl estradiol and estrone did not have any effect on TNFalpha-induced VCAM-1 expression at the concentrations tested. We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. Our results indicate that 17-epiestriol is more potent than 17-beta E(2) in suppressing TNFalpha-induced VCAM-1 expression and that this action is modulated at least in part through NO.  相似文献   

15.
16.
Ceruloplasmin, metallothionein, and ferritin are metal-binding proteins with potential antioxidant activity. Despite evidence that they are upregulated in pulmonary tissue after oxidative stress, little is known regarding their influence on trace metal homeostasis. In this study, we have used copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) transgenic-overexpressing and gene knockout mice and hyperoxia to investigate the effects of chronic and acute oxidative stress on the expression of these metalloproteins and to identify their influence on copper, zinc, and iron homeostasis. We found that the oxidative stress-mediated induction of ceruloplasmin and metallothionein in the lung had no effect on tissue levels of copper, iron, or zinc. However, Cu/Zn SOD expression had a marked influence on hepatic copper and iron as well as circulating copper homeostasis. These results suggest that ceruloplasmin and metallothionein may function as antioxidants independent of their role in trace metal homeostasis and that Cu/Zn SOD functions in copper homeostasis via mechanisms distinct from its superoxide scavenging properties.  相似文献   

17.
Genistein-8-C-glucoside (G8CG) belongs to isoflavones, which are a subclass of flavonoids, a large group of polyphenolic compounds widely distributed in plants. A number of studies on flavonoids show their cardioprotective and antiosteoporosis properties in in vitro and in vivo models. As a phytoestrogen, genistein has recently generated interest as a potential anticancer and antiatherogenic agent. Several flavonoids are known as antioxidants and scavengers of free oxygen radicals. In the current investigation we used glycosylated genistein (genistein-8-C-glucoside) from flowers of lupine (Lupinus luteus L.). Many authors have found that the action of genistein is not so simple, although many reports conducted in vitro have demonstrated that it is cytotoxic and genotoxic. Therefore, the cytotoxic and genotoxic effects of this compound in Chinese hamster ovary cells (line CHO) were studied. A colorimetric MTT assay to assess cytotoxicity and a Comet assay for the detection of DNA damage were used. Apoptosis was determined by the Hoechst 33258/propidium iodide staining technique. We have also demonstrated antioxidant properties of G8CG. The level of reactive oxygen species generated by G8CG alone and/or H2O2 was evaluated with fluorescence probes: dichlorofluorescein-diacetate (DCFDA) by flow cytometry. The cells were exposed to various concentrations of genistein-8-C-glucoside (1-290 microM) and hydrogen peroxide (10-130 microM) and the effect of G8CG alone or in combination with H2O2 was determined. The results reveal that G8CG at concentrations higher than 10 microM significantly reduced cell viability, induced apoptosis and DNA damage. However at lower concentrations (5 and 7.5 microM), G8CG showed antioxidant properties, but had no cytotoxic or genotoxic activity.  相似文献   

18.
Genistein is an isoflavonic phyto-oestrogen contained in soya beans. It is thought to display anti-cancer effects. This study was designed to investigate its effect on human intestinal colon cancer Caco-2 cells. MTT assay, flow cytometric analysis and western blotting were used to investigate the effect of genistein on cell proliferation, cell cycle progression and protein alterations of selected cell cycle-related proteins in Caco-2 cells. Our results showed that genistein and daidzein significantly suppressed cell proliferation. Genistein treatment was demonstrated to modulate cell cycle distribution through accumulation of cells at G2/M phase, with a significant decreasing effect of Cyclin B1 and Serine/threonine-protein kinase 2 (Chk2) proteins expression. However, daidzein did not alter the cell cycle progression in Caco-2 cells. All these observation strongly indicate that genistein has anti-proliferative effect in human intestinal colon cancer Caco-2 cells through the down-regulation of cell cycle check point proteins, Cyclin B1 and Chk2.  相似文献   

19.
Zinc is an essential oligoelement for cell growth and cell survival and has been demonstrated to protect cells from oxidative stress induced by UVA or from genotoxic stress due to UVB. In a recent work we demonstrated that the antioxidant role of zinc could be related to its ability to induce metallothioneins (MTs). In this study we identified the mechanism of zinc protection against solar-simulated light (SSL) injury. Cultured human keratinocytes (HaCaT) were used to examine MTs expression and localization in response to solar-simulated radiation. We found translocation to the nucleus, with overexpression of MTs in irradiated cells, a novel observation. The genoprotective effect of zinc was dependent on time and protein synthesis. DNA damage was significantly decreased after 48 h of ZnCl(2) (100 microM) treatment and is inhibited by actinomycin D. ZnCl(2) treatment (100 microM) led to an intense induction, redistribution, and accumulation of MT in the nucleus of irradiated cells. MT expression correlated with the time period of ZnCl(2) treatment. CdCl(2), a potent MT inducer, did not show any genoprotection, although the MTs were expressed in the nucleus. Overall our findings demonstrate that MTs could be a good candidate for explaining the genoprotection mediated by zinc on irradiated cells.  相似文献   

20.
Females live longer than males. We have shown that the higher levels of estrogens in females protect them against aging, by up-regulating the expression of antioxidant, longevity-related genes, such as that of selenium-dependent glutathione peroxidase (GPx) and Mn-superoxide dismutase (Mn-SOD). Both estradiol and genistein (the most abundant phytoestrogen in soybeans) share chemical properties which confer antioxidant features to these compounds. However, the low concentration of estrogens and phytoestrogens make it unlikely that they exhibit significant antioxidant capacity in the organism. Physiological concentrations of estrogens and nutritionally relevant concentrations of genistein activate the MAP kinase pathway. These, in turn, activate the nuclear factor kappa B (NF-kappa B) signaling pathway. Activation of NF-kappa B by estrogens subsequently activates the expression of Mn-SOD and GPx, but genistein is only capable of activating Mn-SOD expression. This could be due to the fact that genistein binds preferably to estrogen receptor beta. The antioxidant protection is reflected in the lower peroxide levels found in cells treated with estrogens or phytoestrogens when compared with controls. The challenge for the future is to find molecules that have the beneficial effects of estradiol, but without its feminizing effects. Phytoestrogens or phytoestrogen-related molecules may be good candidates to meet this challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号