首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Blastocladiella emersonii zoospore does not contain sufficient total hexosamine to account for the chitin content of the cell wall formed during germination. It is not deficient in the enzymes needed to synthesize chitin from fructose-6-phosphate and glutamine. The enzymes of hexosamine biosynthesis are located differently in the zoospore than chitin synthetase. Uridine-5′-diphospho-N-acetylglucosamine (UDPGlcNAc), the end product of hexosamine synthesis and a substrate for chitin synthesis, reversibly inhibits the activity of only the first pathway-specific enzyme at concentrations below that estimated to exist in the zoospore. UDPGlcNAc combines with the enzyme-glutamine complex in direct competition with fructose-6-phosphate. Uridine nucleoside phosphates, produced through the utilization of UDPGlcNAc in chitin synthesis, directly compete with the inhibitory effects of UDPGlcNAc, while other nucleoside phosphates can enhance the inhibition due to UDPGlcNAc. The data are consistent with the simultaneous binding of UDPGlcNAc at two enzyme sites to inhibit catalysis — the substrate (fructose-6-phosphate) site and the uridine nucleoside phosphate site. The hexosamine pathway can be negatively regulated, as it is in the zoospore, by UDPGlcNAc and can be positively regulated, as it is during zoospore germination, by lowering UDPGlcNAc concentration and raising UDP + UTP concentrations. Other variations in these metabolites could regulate hexosamine biosynthesis during other phases of the B. emersonii life cycle.  相似文献   

2.
A monospecific polyclonal antiserum to the regulatory subunit (R) of the cAMP-dependent protein kinase of Blastocladiella emersonii has been developed by immunization with purified regulatory subunit. In Western blots, the antiserum displays high affinity and specificity for the intact R monomer of Mr = 58,000, as well as for its proteolytic products of Mr = 43,000 and Mr = 36,000, even though the antiserum has been raised against the Mr = 43,000 fragment. Western blots of cell extracts prepared at different times during the life cycle of the fungus indicate that the increase in cAMP-binding activity occurring during sporulation, as well as its decrease during germination, are associated with the accumulation of the regulatory subunit during sporulation and its disappearance during germination, respectively. Pulse labeling with [35S]methionine and immunoprecipitation indicate that the accumulation of R is due to its increased synthesis during sporulation. Two-dimensional gel electrophoresis of affinity purified cell extracts obtained after [35S]methionine pulse labeling during sporulation confirms de novo synthesis of R during this stage and furthermore shows that the protein is rapidly phosphorylated after its synthesis. In vitro translation studies using RNA isolated from different stages of the life cycle followed by immunoprecipitation have shown that the time course of expression of the mRNA coding for the regulatory subunit parallels the rate of its synthesis in vivo.  相似文献   

3.
The enzyme amidotransferase [2-amino-2-deoxy-D-glucose-6-phosphate ketol isomerase (amino-transferring); EC 2.6.1.16] catalyzes the first step in the hexosamine biosynthetic pathway. In Blastocladiella emersonii the sensitivity of the enzyme to the inhibitor uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) is developmentally regulated. The inhibitable form of amidotransferase activity present in the zoospore is converted to a noninhibitable form during germination. The latter form is present throughout the growth phase and sensitivity to UDP-GlcNAc gradually returns to the zoospore level during sporulation [C.P. Selitrennikoff, N.E. Dalley, and D.R. Sonneborn (1980) Proc. Natl. Acad. Sci. USA 77, 5998-6002]. The following evidence suggests that a phosphorylation/dephosphorylation mechanism underlies this interconversion: (i) Both the vegetative and zoospore enzymes have the same molecular weight of 140,000, but the vegetative enzyme elutes significantly earlier on a DEAE-cellulose column than does the zoospore enzyme. (ii) The increased sensitivity to UDP-GlcNAc occurring in vivo and in vitro correlates with increased phosphorylation of a polypeptide of apparent Mr 76,000. This component copurifies with amidotransferase activity through ion-exchange chromatography and sucrose density gradient centrifugation. (iii) Desensitization and concurrent dephosphorylation of sensitive amidotransferase can be observed in vitro after treatment with a partially purified magnesium-dependent phosphoprotein phosphatase from zoospores.  相似文献   

4.
5.
6.
Summary Synchronized single generations of Blastocladiella emersonii containing 0.9×107 to 1.8×108 cells were grown on glucose-U-14C. Between 30% and 85% of generation time, 3.5×10-5 Moles of lactic acid/cell accumulated in the medium, but essentially all of it was consumed again by the time cells underwent sporogenesis. No other exogenous radioactive metabolic products were detected. At generation time, the intracellulär distribution of 14C was as follows: glycogen-like polysaccharide, 28%; chitin, 23%; protein, 19%, with maximum specific activity in a high-arginine fraction; DNA, 9%; soluble small molecules, <9%, with acidic keto compounds <0.4%; non-saponifiable lipids, 6%, with lipid fatty acids 0.1%, lipid glycerol and neutrals, 0.5%, and free fatty acids, <0.4%; and RNA, <0.4%. The intracellular distribution of a hemoprotein, apparently a B-type cytochrome, was effected by white light. In light-grown cells, it was present in soluble form, while in dark-grown cells it was bound to cell particles which sedimented in low centrifugal fields. The results, together with previously published data on Blastocladiella, were discussed.  相似文献   

7.

Objective

The hexosamine biosynthesis pathway (HBP) flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc) levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization.

Methods

Isolated rat hearts were perfused with glucosamine (0–10 mM) to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by 13C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36.

Results

Glucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation.

Conclusion/Interpretation

These data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism.  相似文献   

8.
9.
The stoichiometry of cyclic AMP binding protein to cyclic AMP in sporulating cells of Blastocladiella emersonii and the resistance of protein-bound cyclic AMP to enzyme-catalyzed hydrolysis suggest that the distribution of cyclic AMP between free and protein-bound pools is an important factor in cyclic AMP metabolism. Most but not all of the cyclic AMP binding protein in sporulating cells is associated with a cyclic AMP-dependent protein kinase.  相似文献   

10.
11.
Protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) and cyclic adenosine 3',5'-monophosphate binding activities have been identified in zoospore extracts of the water mold Blastocladiella emersonii. More than 75% of these activities is found in the soluble fraction. Soluble protein kinase activity is resolved in three peaks(I, II and III) by DEAE-cellulose chromatography. Peak I is casein dependent and insensitive to cyclic AMP. Peak II is histone dependent and cyclic AMP independent; this enzyme is inhibited by the heat-stable inhibitor from bovine muscle. Peak III utilizes histone as substrate and is activated by cyclic AMP.  相似文献   

12.
13.
14.
In an effort to obtain orange mutants ofBlastocladiella emersonii Cantino &Hyatt, wild type zoospores were treated with mitomycin. From the variants produced, we obtained a stable, albino mutant (Ma-1) that differs significantly from another, previously described (Shaw &Cantino, 1969) UV-induced, albino variant. This report concerns the origin of Ma-1, its distinguishing features, and its apparent similarity to the few LC (late colorless) plants that normally appear in wild type populations. A preliminary note regarding mitomycin-induced variants ofB. emersonii has been published (Matsumae &Cantino, 1970).  相似文献   

15.
16.
Summary 1. Methods are described for inducing the synchronous release of zoospores from single-generation cultures of Blastocladiella emersonii and preparing washed suspensions of up to 2×1010 non-encysted zoospores for physiological studies. 2. During 5 h incubations of such zoospores in a buffered CaCl2 solution, the rate of oxygen uptake was ca. 10 l O2 x h-1 x (107 cells)-1, the respiratory quotient was 0.92, the average dry weight (47 picograms) of the spore decreased 1.5 picograms (pg), and other components (per-spore) decreased as follows: nucleic acid, nil; total lipid, 0,95 pg; phospholipid, 0.80 pg; polysaccharide, 0.5–1.0 pg, depending upon initial (1.5–2.3 pg) intracellular levels; protein, 3.0 pg; and total nitrogen 0.4 pg. During this period, 0.38 pg of NH3-nitrogen was released per spore. Correspondingly, the lipid bodies decreased in size and number and the SB-matrix became progressively thinner. 3. It was concluded that during the endogenous metabolism of a non-encysted zoospore of B. emersonii, a significant portion (11.5%) of its protein pool, as well as lipid and polysaccharide components, were degraded.Abbreviations OC ordinary colorless - RS resistant sporangial - %NE and %E per-cent non-encysted and encysted, respectively - R.Q. respiratory quotient, QO 2 (cell), l O2 x h-1 x (107 cells)-1 - BP Blastocladiella polysaccharide - MOPS Morpholino propane sulfonic acid - RNA ribonucleic acid - TCA trichloroacetic acid - PYG a peptone-yeast extract-glucose medium from Difco Labs, Detroit, Michigan  相似文献   

17.
18.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate and affinity chromatography on N6-(2-aminoethyl)-cAMP-Sepharose were used to analyze the cAMP-binding proteins present in cell-free extracts of Blastocladiella emersonii zoospores. In the presence of a mixture of protease inhibitors, 8-azido[32P]cAMP was specifically and quantitatively incorporated into a major protein band of Mr = 58,000, and three minor protein bands of Mr = 50,000, Mr = 43,000, and Mr = 36,000 respectively, after autoradiography following sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. In the absence of the protease inhibitors, the Mr = 58,000 protein band was converted into the lower molecular weight cAMP-binding proteins, indicating a high sensitivity of the intact Mr = 58,000 protein band to endogenous proteases. The Mr = 58,000 protein corresponded to the regulatory subunit (R), of the cAMP-dependent protein kinase of zoospores, as shown by their identical behavior on DEAE-cellulose chromatography. The partially purified protein kinase incorporated 32P from [gamma-32P] ATP . Mg2+ into R as demonstrated by the specific adsorption of the 32P-labeled protein with N6-(2-aminoethyl)-cAMP-Sepharose. The incorporated 32P group was rapidly removed by endogenous phosphoprotein phosphatases in the presence of cAMP, as shown by pulse-chase experiments with [gamma-32P]ATP. Dephosphorylation of R-cAMP and rapid proteolysis may indicate two other mechanisms, in addition to cAMP, for the control of this protein kinase in vivo.  相似文献   

19.
To investigate whether ion currents help to localize growth and development of Blastocladiella emersonii, we grew the organisms in gradients of various ionophores and inhibitors. Gradients were generated by placing into the culture fine glass fibers coated with insoluble inhibitors; in some cases, inhibitors were adsorbed onto beads of ion-exchange resin. Organisms growing in many of these gradients exhibited a striking tendency for the thalli to grow toward the fiber. This proved to be misleading; the cells grew not toward the source of the ionophore but into the unoccupied zone of inhibition adjacent to the fiber. Fibers coated with gramicidin-D induced marked effects on the growth of the rhizoids, which were greatly enlarged and grew toward and onto the fiber. None of the other inhibitors produced such effects, except for beads coated with the proton conductors tetrachlorosalicylanilide and compound 1799. The results suggest that orientation of rhizoid growth results from enhancement of proton flux across the plasma membrane. Growth of the rhizoids was also strongly oriented by gradients of inorganic phosphate and an amino acid mixture; gradients of glucose, K+, Ca2+, and glutamate were ineffective. We propose that a major physiological function of the rhizoid is to transport nutrients to the thallus. Finally, we examined the effects of a series of benzimidazole antitubulins as well as the cytochalasins. These did not orient growth but grossly perturbed the pattern of cellular organization, producing small spherical cells with multiple stunted rhizoids. The findings are interpreted in terms of the interaction of an endogenous transcellular proton current with elements of the cytoskeleton in the determination of form.  相似文献   

20.
Multiple protein kinases in the water mould Blastocladiella emersonii are described. A cyclic AMP-independent protein kinase which prefentially phosphorylates casein remains unchanged during vegetative growth of the cells and in the two phases of differentiation: germination and sporulation. In contrast, cyclic AMP-dependent protein kinase activity and cyclic AMP binding components are induced during the sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号