首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current scenario of climate change and increasing water scarcity there is an increased need to combine research efforts for the development of abiotic stress resistant crops, specifically plants able to support water deficit (WD). Polyamines (PAs) have been described as being involved in the regulation of many physiological processes and a variety of stress responses in plants. Arginine decarboxylase (ADC) is considered a key enzyme of the polyamine (PA) biosynthetic pathway. In this study, a T2 transgenic homozygous line of Medicago truncatula expressing the oat Adc under the control of CaMV 35S was obtained and was shown to have higher leaf accumulation of putrescine, spermidine and norspermidine compared to wild type plants. The photosynthetic parameters, leaf internal CO2 concentration (Ci), net CO2 assimilation rate (A), transpiration (E) and stomatal conductance (gs) of transformed and untransformed lines during WD and water deficit recovery experiments were measured by IRGA (infrared gas analyzer) and compared over time. Two light intensities were used, growth light intensity (391 μmol m?2 s?1) and saturating light intensity (1044 μmol m?2 s?1). Independently of the light intensity, and under WD, the transgenic line stood out with increased Ci, A, E and gs; suggesting a possible benefit of the augmented PAs under such disturbing environmental conditions. We showed that the constitutive expression of the oat Adc gene improve the physiological responses to WD and that WD recovered transgenic plants had higher seed yield, suggesting a possible benefit of PA metabolism manipulation in legumes.  相似文献   

2.
Ying Wu  Bing Wang  Dima Chen 《Plant and Soil》2018,431(1-2):107-117

Background and aims

Nitrogen (N) deficiency and drought are two key limiting factors for rice production worldwide, but the relationship of drought stress with N homeostasis in rice is rarely advanced. The aim of this study was to dissect the physiological effects of drought stress on rice growth that coupled unbalanced N metabolism.

Results

Water-deficient stress (WD) limited stomatal aperture function and activity of Rubisco carboxylase to photosynthesis. The rate of total electron transport (Jt) and the electron to carboxylation (Jc) were considerably decreased, whereas the proportion of e? flow to photorespiration was stimulated by WD, especially at 1600 μmol m?2 s?1 PPFD. Concurrently, the expressions of glycolate oxidase genes (GOX1, GOX5) and glycine decarboxylase complex (GDCH, GDCP and GDCT) were significantly induced in leaves of WD treatment, which led to the accumulation of reactive oxygen species in leaves. With the photosynthetic change, nitrate uptake and reduction were suppressed. Moreover, the enhanced photorespiration generated excess NH3 accumulation in leaves and stimulated the expressions of GS1;1, GS1;2 and GS2, which were tightly coupled with the expressions of PEPC1 and PEPC2 under WD stress.

Conclusions

Our results suggest that the inhibited nitrate reduction associated with diminished electron transport rate, and the photorespiration-associated accumulation of hydrogen peroxide and NH3 were critical in the drought-induced rice growth inhibition.
  相似文献   

3.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

4.
Methane-derived carbon (MDC) can subsidize lake food webs. However, the trophic transfer of MDC to consumers within macrophyte vegetation is largely unknown. We investigated the seasonality of δ13C in larval chironomids within Nelumbo nucifera (Gaertn.) and Trapa natans var. Japonica (Nakai) vegetation in the shallow, eutrophic Lake Izunuma in Japan. Over the past several years, N. nucifera has rapidly expanded across more than 80% of the lake surface. Prior to the expansion of N. nucifera (2007–2008), a previous study reported extremely low larval δ13C levels with peak sediment methane concentrations in August or September. After the expansion of N. nucifera (2014–2015), we observed extreme hypoxia as low as or lower than 1 mg l?1 among the macrophyte coverage during June and August. During August and September, no larvae could be found among N. nucifera, and larvae in T. natans showed relatively high δ13C levels (>???40‰). In contrast, larvae were markedly 13C–depleted (down to ??60‰) during October and November. The renewed supply of oxygen to the lake bottom may stimulate MOB activity, leading to an increase in larval assimilation of MDC. Our results suggest that macrophyte vegetation can affect the seasonality of MDC transfer to benthic consumers under hypoxic conditions in summer.  相似文献   

5.
This study reports on the effects of dissolved organic matter (DOM) derived from the aquatic macrophyte Pistia stratiotes (collected from a tropical reservoir) on the mixotrophic growth of two phytoplankton species (Chlamydomonas moewusii and Anabaena sp.). The DOM from P. stratiotes had a mainly aliphatic structure, low molecular weight, low cellulose and lignin content and high carbon content. The addition of DOM (5% v/v) significantly decreased the growth rate of Anabaena sp. but increased the chlorophyll a concentration of C. moewusii. Higher light intensity (100 versus 30 µmol m?2 s?1) was important for Anabaena sp., increasing its growth rate and chlorophyll content. The use of DOM from P. stratiotes to mitigate cyanobacterial blooms should be further explored in future studies.  相似文献   

6.
Predator–prey relationships are altered by anthropogenic contaminants. Road salt is a widespread contaminant among freshwater ecosystems, yet a relatively understudied subject in community ecology. Unknown is whether road salt salinization interacts with predatory stress to influence the growth, behavior, or reproduction of freshwater organisms. Using rainbow trout (Oncorhynchus mykiss) and zooplankton (Daphnia pulex), we exposed them to variable levels of road salt (NaCl) crossed with the presence or absence of alarm cues or kairomones. Alarm cue reduced trout activity and aggression and increased shoaling behavior. Road salt reduced trout growth in the high compared to moderate salt concentration, but neither concentration was different from the control. There was no interaction between alarm cues and salt for trout. Road salt and predatory stress had an additive effect on Daphnia abundance. Predatory stress decreased Daphnia abundance by 11%. Compared to the control, salt decreased Daphnia abundance by 40% in 860 mg Cl?/L and 79% in 1300 mg Cl?/L, and by the final day abundance was reduced by 85% in 1300 mg Cl?/L. Road salt and predatory stress had an interactive effect on Daphnia reproduction. Predatory stress in control water and moderate salt levels (230 mg Cl?/L) increased sexual reproduction of Daphnia, but these responses disappeared at high salt concentrations. Thus, road salt could limit reproductive adaptations to natural and anthropogenic stressors in Daphnia. Our results indicate road salt salinization could alter zooplankton population dynamics directly and by interacting with predatory stress, which might affect energy flow through freshwater food webs.  相似文献   

7.
The prokaryotic communities of four salterns (Bingöl, Fadlum, Kemah, and Tuzlagözü) in Turkey were examined and compared using the cultivation and cultivation-independent methods [fluorescence in situ hybridization (FISH) and 454 pyrosequencing]. FISH analysis with universal probes revealed that feeding waters carried 1.6 × 102–1.7 × 103 cells mL?1, while crystallization ponds carried 3.8 × 106–2.0 × 107 cells mL?1 that were mostly haloarchaea, including square cells (except for Kemah). High-throughput 16S rRNA-based gene sequencing showed that the most frequent archaeal OTUs in Bingöl, Fadlum, Tuzlagözü, and Kemah samples were affiliated with Haloquadratum (76.8 %), Haloarcula (27.8 %), Halorubrum (49.6 %), and Halonotius (59.8 %), respectively. Bacteroidetes was the dominant bacterial phylum in Bingöl and Fadlum, representing 71.5 and 79.5 % of the bacterial OTUs (respectively), while the most abundant bacterial phylum found in the Kemah saltern was Proteobacteria (79.6 %). The majority of the bacterial OTUs recovered from Tuzlagözü belonged to the Cyanobacteria (35.7 %), Bacteroidetes (35.0 %), and Proteobacteria (25.5 %) phyla. Cultivation studies revealed that the archaeal isolates were closely related to the genera Halobacterium, Haloarcula, and Halorubrum. Bacterial isolates were confined to two phyla, Proteobacteria (Alphaproteobacteria and Gammaproteobacteria classes) and Bacteroidetes. Comparative analysis showed that members of the Euryarchaeota, Bacteroidetes, Proteobacteria, and Cyanobacteria phyla were major inhabitants of the solar salterns.  相似文献   

8.
Hygraula nitens is a New Zealand native moth with aquatic larvae that feed on submerged aquatic plants. The larvae have been mainly observed using native Potamogeton and Myriophyllum species as a food source, although some studies reported larvae feeding on the alien macrophytes Hydrilla verticillata, Lagarosiphon major and Ceratophyllum demersum. Experimental mesocosm studies showed larvae had a major effect on H. verticillata, C. demersum, L. major, Elodea canadensis and Egeria densa. In both no choice and choice experiments H. nitens larvae showed a clear preference for and the highest consumption of C. demersum, while the native macrophyte Myriophyllum triphyllum ranked fourth out of five alien and two native plant species, indicating a preference of the larvae for alien macrophytes. Additional choice experiments using C. demersum, sampled from different waters in NZ, illustrated that there was a clear difference in H. nitens preference for plants based on their source. However although C. demersum had the lowest leaf dry matter content (LDMC) compared with the other macrophytes, neither the LDMC nor leaf carbon, nitrogen, phosphorus or total phenolic contents alone could explain the preferences of H. nitens, and we conclude that food choice is based on a combination of these and/or additional factors.  相似文献   

9.
This study aimed at evaluating the phytoplankton adaptive strategies of phytoplankton in a shallow urban eutrophic tropical reservoir, Garças Reservoir, over temporal and vertical scales. Samples were taken monthly for eight consecutive years (1997–2004) at a fixed set of depths in the water column. At the beginning, the reservoir was eutrophic with 20% of its surface covered by water hyacinth Eichhornia crassipes (phase I). Then, in phase II, water hyacinth grew to cover up to 40–70% of the surface. In phase III it was mechanically removed. After macrophyte removal the limnology changed, drastically. This removal modified nutrient dynamics, drastically reduced water transparency, and increased both primary production and phytoplankton biomass, the latter impeding light penetration. Phytoplankton life strategies during water hyacinth dominance (phase II) responded promptly to this environmental disturbance in conditions of low dissolved oxygen (DO) and soluble reactive phosphorus (SRP) and high free CO2 values. After macrophyte removal, a permanent cyanobacterial monoculture was established. Phase I was dominated basically by Sphaerocavum brasiliense, mainly during the stratified months, represented by non-flagellate colonies, the M functional group, S-strategists, and greater biomass of species with high maximal axial linear dimension (MLD) and cell volumes. Phase II was dominated by Cryptomonas curvata, C. erosa, C. marssonii, Trachelomonas sculpta, T. volvocinopsis, T. kelloggii, T. hispida, Peridinium spp., Aphanocapsa spp., and Aphanothece spp., and was represented by unicellular flagellate species, Y, W2, K, LO functional groups, and C-strategists, greater biomass of species with intermediate MLD and cell volumes. Phase III was dominated by Microcystis aeruginosa, M. panniformis, Cylindrospermopsis raciborskii, Planktothrix agardhii, and Aphanizomenon gracile, represented by non-flagellate colonies, M, S, H1, S functional groups, and S and R-strategists, greater biomass of species with high MLD and cell volumes (>50 μm and >104 μm3, respectively).  相似文献   

10.
In 2012 to 2014, Philippine green coffee beans from Coffea arabica in Benguet and Ifugao; Coffea canephora var. Robusta in Abra, Cavite, and Ifugao; and Coffea liberica and Coffea excelsea from Cavite were collected and assessed for the distribution of fungi with the potential to produce ochratoxin A (OTA). The presence of fungal species was evaluated both before and after surface sterilization. There were remarkable ecological and varietal differences in the population of OTA-producing species from the five provinces. Aspergillus ochraceus, A. westerdijkiae, and Penicillium verruculosum were detected from Arabica in Benguet and Ifugao while Aspergillus carbonarius, Aspergillus niger, and Aspergillus japonicus were isolated in Excelsa, Liberica, and Robusta varieties from Abra, Cavite, and Davao. Contamination by Aspergillus and Penicillium species was found on 59 and 19 %, respectively, of the 57 samples from five provinces. After disinfection with 1 % sodium hypochlorite, the levels of infection by Aspergillus and Penicillium fell to 40 and 17 %, respectively. A total of 1184 fungal isolates were identified to species level comprising Aspergillus sections Circumdati (four species), Clavati (one), Flavi (one), Fumigati (one), Nigri (three), and Terrie (one). Within section Circumdati, 70 % of A. ochraceus produced OTA as high as 16238 ng g?1 while 40 % of A. westerdijkiae produced maximum OTA of 36561 ng g?1 in solid agar. Within section Nigri, 16.76 % of A. niger produced OTA at the highest 18439 ng g?1, 10 % of A. japonicus at maximum level of 174 ng g?1, and 21.21 % of A. carbonarius yielded maximum OTA of 1900 ng g?1. Of the 12 species of Penicillium isolated, P. verruculosum was ochratoxigenic, with a maximum OTA production of 12 ng g?1.  相似文献   

11.
This investigation demonstrates that programmed cell death (PCD) in a cyanobacterium, Microcystis aeruginosa, resulting from allelopathic stress induced by a submerged macrophyte, Myriophyllum spicatum, in a co-culture system. The hallmarks of PCD, caspase-3-like protease activity, DNA fragmentation, and destruction of cell ultrastructure, as well as intracellular PCD signaling radicals, reactive oxygen species (ROS), and nitric oxide (NO), were measured in M. aeruginosa cells co-cultured with M. spicatum for 7 days. The results showed a dose–response relationship between M. spicatum biomass and M. aeruginosa mortality. A caspase-3-like protease was activated and elevated from day 3. Thylakoid disintegration, cytoplasmic vacuolation, and fuzzy nuclear zone were observed by transmission electron microscopy, and distinct DNA fragmentation was detected in M. aeruginosa cells at a M. spicatum biomass of 6.0 g fresh weight (FW) L?1 during the 7 days. Allelochemicals of total phenolic compounds (TPCs) were determined in co-culture water, and the concentration increased with increasing of M. spicatum biomass and co-culture time. Compared with the level of ROS production in the control group, a significant overproduction of ROS was detected in M. aeruginosa cells in the treatment group, and this was positively correlated with TPC concentration. Furthermore, the level of intracellular NO increased with the percent mortality of M. aeruginosa. The results indicated that a PCD pathway was induced in the cyanobacterium M. aeruginosa when co-cultured with the submerged macrophyte M. spicatum.  相似文献   

12.
Present study revealed the presence of 16 earthworm species belonging to 11 genera and four families viz. Megascolecidae (Amynthus alexandri, Metaphire houlleti, Lampito mauritii, Kanchuria sp1, Perionyx excavatus), Octochaetidae (Eutyphoeus gigas, Eutyphoeus comillahnus, Eutyphoeus orientalis, Octochaetona beatrix, Dichogaster bolaui, Lennogaster chittagongensis, Lennogaster yeicus), Moniligastridae (Drawida papillifer papillifer, Drawida assamensis, Drawida nepalensis) and Glossoscolecidae (Pontoscolex corethrurus) in the soils of five bamboo species [Bambusa balcooa (Sil Barak), Melocanna baccifera (Muli), Bambusa polumorpha (Bari), Bambus cacharensis (Bom) and Bambus bambus (Katabarak)] of West-Tripura. While four earthworm species viz. Metaphire houlleti, Drawida assamensis, Drawida papillifer papillifer and Pontoscolex corethrurus were common to all species of bamboo plantations, the rest showed restricted distribution. Among the earthworm species 4 were exotic (Amynthus alexandri, Metaphire houlleti, Dichogaster bolaui and Pontoscolex corethrurus) and the others were native to the Indian sub-continent. In general, earthworms under the bamboo plantations occurred within temperature range of 21.6 °C–28.0 °C, pH 4.0–7.0, organic matter 0.56–5.99 %, moisture 9.6–31.7 %, water holding capacity 14.6–43.9 % and bulk density 0.7–1.8 g cm?3. The average density and biomass of the earthworms in the studied places were 108 ind m?2 and 44 g m?2 respectively. Earthworm diversity, dominance and evenness indices showed the values 1.00, 0.47 and 0.70 respectively. Earthworm density and biomass showed a negative correlation with temperature whereas those had a strong positive correlation with pH, moisture and organic matter of the soils.  相似文献   

13.
Single cells of five different Microcystis species (M. ichthyoblabe, M. viridis, M. flos-aquae, M. wesenbergii, and M. aeruginosa) were batch-cultured at different temperatures and light intensities: (a) 25 °C and 50 μmol photons m?2 s?1 (control culture); (b) 25 °C and 10 μmol photons m?2 s?1; and (c) 15 °C and 50 μmol photons m?2 s?1. The extracellular polysaccharide content was significantly higher in treatments b and c than in the control treatment. All Microcystis species existed as single cells under the control treatment but formed colonies in treatments b and c. All of the colonies were irregular with indistinct margins. M. ichthyoblabe, M. viridis, M. flos-aquae, and M. wesenbergii formed colonies with similar morphologies and their cells were loosely aggregated. In contrast, M. aeruginosa formed denser colonies with no distinct holes. The colony morphologies differed from the classic morphology of M. ichthyoblabe field-grown colonies but resembled that of small colonies found in Lake Taihu (Yangtze Delta Plain, China) during early spring. This indicates that field- and laboratory-grown colonies are governed by similar formation processes. We suggest that in laboratory and field environments, M. ichthyoblabe (or M. flos-aquae) colonies are representative of small colonies formed from single Microcystis cells, whereas the morphology of older colonies evolves to resemble M. wesenbergii and M. aeruginosa colonies.  相似文献   

14.
Inheritance pattern of wood traits viz. specific gravity, fibre dimensions and fibre-derived biometrical indices and their interactions among themselves and with that of growth are reported in Hevea brasiliensis. Girth (h2 =???0.02?±?0.44 to h2 =?0.35?±?0.24) showed moderate genetic control. Among wood traits, specific gravity (h2?=?0.15?±?0.31 to h2 =?0.33?±?0.28) was found to be under moderate genetic control. Fibre traits viz., fibre length (h2 =???0.26?±?0.30 to h2 =?0.50?±?0.34), fibre diameter (h2 =?0.19?±?0.49 to h2 =?0.70?±?0.11), fibre lumen diameter (h2 =???0.18?±?0.35 to h2 =?0.56?±?0.47) and fibre wall thickness (h2 =???5.17?±?5.26 to h2 =?0.50?±?0.50) were under moderate to strong genetic control. Among fibre-derived indices, flexibility coefficient (h2 =?0.48?±?0.21 to h2 =?0.89?±?0.29) showed moderate to very strong genetic control. The Runkel ratio (h2 =???0.40?±?0.27 to h2 =?0.42?±?0.29) and slenderness ratio (h2 =???0.36?±?0.29 to h2 =?0.43?±?0.28) showed moderate genetic control. Girth showed very strong positive genetic correlation with fibre wall thickness and strong positive correlation with fibre width indicating scope of indirect selection potential for these traits. Wood specific gravity was not correlated with either girth or fibre traits. Hence, it would be possible to concomitantly improve growth and fibre traits without adversely affecting wood specific gravity. Moderate to very high estimates of heritability for fibre traits, girth and specific gravity indicated that considerable genetic gain can be realised for these traits. Implications of the above findings in genetic improvement of wood in Hevea are discussed.  相似文献   

15.
Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation below-ground. The effects of four genotypes of short-rotation coppice willow (Salix spp., ‘Terra Nova’ and ‘Tora’) and Miscanthus (M.?×?giganteus (‘Giganteus’) and M. sinensis (‘Sinensis’)) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under (‘plant’) and between plants (‘gap’) in a field experiment on a temperate agricultural silty clay loam after 4 and 6 years’ management. Root density was greater under Miscanthus for plant (up to 15.5 kg m?3) compared with gap (up to 2.7 kg m?3), whereas willow had lower densities (up to 3.7 kg m?3). Over 2 years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m?3 and was greatest under Sinensis at 0–0.1 m depth (24.8 kg m?3). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m?3) than gap (3.1 kg m?3) for Sinensis. Estimated SOC stock change rates over the 2-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha?1 year?1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil.  相似文献   

16.
Genebank conservation of pollen is valuable because it makes genetic resources immediately available for use in breeding programs. In the case of Citrus species, conserved anthers or pollen can be easily transported and used to develop new varieties with pathogen resistance and desirable quality and yield traits. The aim of this study was to develop and improve air-desiccation cryopreservation protocols for Citrus cavaleriei and Citrus maxima anthers in genebanks. In the current study, warming, rehydration, and in vitro germination conditions were optimized to achieve high levels of in vitro germination in Citrus pollen for ten cultivars after liquid nitrogen (LN) exposure. The optimal warming, rehydration, and in vitro germination medium formulations affected the germination levels after pollen cryopreservation, with species- and cultivar-dependent effects. The Citrus anthers were dehydrated to the moisture content of 5–14% before LN exposure and warmed at 25 (cryopreserved Citrus anthers with a moisture content of lower than 10%) or 37°C (a moisture content of 10% or higher), then rehydrated, and cultured on medium with 150-g L?1 sucrose, 0.1-g L?1 boric acid, 1.0-g L?1 calcium nitrate, 0.1-g L?1 potassium nitrate, 0.3-g L?1 magnesium sulfate, and 10-g L?1 agar. After 2 yr of storage, in vitro germination levels of Citrus pollen after cryopreservation were significantly higher (> 22% for all ten cultivars) than those of samples that were stored at 4°C (0%). In vitro germination levels of pollen from six of ten cultivars after cryopreservation remained relatively high after 2 yr of storage (38–93%). The highest viability of 93% was obtained for C. cavaleriei ‘2–3’. The methods identified in the current study could be used to cryopreserve C. cavaleriei and C. maxima anthers.  相似文献   

17.
Coupling of biodegradable corncob and plastic carrier was optimized in continuous-flow solid-phase denitrification systems for enhancing simultaneously removal of nitrogen and organics in agricultural runoff. In compared with preposition of plastic carriers and mixed distribution method, it was demonstrated that the preposition of corncobs simultaneously enhanced nitrate (6.64 ± 1.35 mg L?1 day ?1) and organics removal (6.33 ± 1.44 mg L?1 day?1) at a hydraulic retention time (HRT) of 6 h. The operation performance could be further enhanced with extension of HRT to 12 h. The dominant genera found in corncob were denitrifiers for nitrate reduction (Bosea, Simplicispira, Desulfovibrio, Klebsiella, etc.) and fermentative bacteria (Pleomorphomonas, Actinotalea, Opitutus, Cellulomonas, Bacteroides, etc.) responsible for corncob degrading to simple organics for other denitrifiers. However, much lower and different denitrifiers abundances (Bradyrhizobium, Acinetobacter, Bacillus, etc.) exhibited on plastic filler than those of corncob. It well explained that the biofilm on plastic carrier was mainly related with organics removal while the biofilm on corncobs inclined to effectively remove nitrate, and simultaneous removal of nitrogen and organics could be achieved in coupling carriers system with preposition of biodegradable corncob.  相似文献   

18.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

19.
This study examined the co-immobilization of the cyanobacterium Synechococcus elongatus with the plant growth-promoting bacterium Azospirillum brasilense in alginate beads and its potential application for the removal of phosphorus from aquaculture wastewater. Co-immobilization of both microorganisms significantly increased the cell density of S. elongatus (2852.5?×?104 cells mL?1) compared with that of immobilization of cyanobacteria alone (1325.2?×?104 cells mL?1). Chlorophyll a content was similar in co-immobilized (11.1?±?3.5 pg cell?1) and immobilized S. elongatus (14.5?±?4.9 pg cell?1). Azospirillum brasilense showed continuous growth until day 2, after which its cell concentration declined until the end of the assay. Co-immobilized S. elongatus removed more phosphorus (44.8 %) than immobilized cyanobacteria cells alone (32.0 %). In conclusion, phosphate removal was greater with free cells of S. elongatus but overlapped with the values that were obtained with the treatment of co-immobilization of cells. Our results demonstrate that A. brasilense enhances the growth of S. elongatus and improves its removal of phosphorus when they are co-immobilized in alginate beads compared with only immobilization of cyanobacteria cells alone.  相似文献   

20.
To restore deteriorated lake ecosystems, it is important to identify environmental factors that influence submerged macrophyte communities. While sediment is a critical environmental factor for submerged macrophytes and many studies have examined effects of sediment type on the growth of individual submerged macrophytes, very few have tested how sediment type affects the growth and species composition of submerged macrophyte communities. We constructed submerged macrophyte communities containing four co-occurring submerged macrophytes (Hydrilla verticillata, Myriophyllum spicatum, Ceratophyllum demersum and Chara fragilis) and subjected them to three sediment treatments, i.e., clay, a mixture of clay and quartz sand at a volume ratio of 1:1 and a mixture at a volume ratio of 1:4. Compared to the clay, the 1:1 mixture treatment greatly increased overall biomass, number of shoot nodes and shoot length of the community, but decreased its diversity. This was because it substantially promoted the growth of H. verticillata within the community, making it the most abundant species in the mixture sediment, but decreased that of M. spicatum and C. demersum. The sediment type had no significant effects on the growth of C. fragilis. As a primary nutrient source for plant growth, sediment type can have differential effects on various submerged macrophyte species and 1:1 mixture treatment could enhance the performance of the communities, increasing the overall biomass, number of shoot nodes and shoot length by 39.03%, 150.13% and 9.94%, respectively, compared to the clay treatment. Thus, measures should be taken to mediate the sediment condition to restore submerged macrophyte communities with different dominant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号