首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Methylcytosine residues in DNA underwent deamination at high temperatures. Furthemore, their rate of deamination at neutral or alkaline pH was greater than that of cytosine residues in DNA. As sources of [14C]5-methylcytosine-containing DNA, we used bacteriophage XP-12 DNA, in which 5-methylcytosine residues completely replace C residues, and calf thymus DNA experimentally substituted with [14C]5-methylcytosine residues. Upon incubation at 95°C in a physiological buffer or at 60°C in 1 M NaOH, the respective rates of deamination of 5-methylcytosine residues were about 3- and 1.5-times those of cytosine residues. Under the same conditions, the free 5-methyldeoxycytidine was converted to thymidine more rapidly than deoxycytidine was converted to deoxyuridine. The reactions at physiological pH and elevated temperature suggest that deamination of 5-methylcytosine residues may yield a significant portion of spontaneous mutations in vivo, especially in view of the lack of thymine-specific mismatch repair systems with specificity and efficiency comparable to that of uracil excision repair systems.  相似文献   

2.
The chemical modification of adenine residues in mouse 5S rRNA with monoperphthalate was carried out to investigate the higher ordered structure of 5S rRNA. The adenine residues at positions 11, 22 (or/and 23), 49 (or/and 50), 54 (or/and 55), 77, 83, 88, 90 and 100 (or/and 101) were modified. This result further confirmed the secondary structure of 5S rRNA constituted of 5 helices and 5 loops postulated by other chemical modifications.  相似文献   

3.
23S rRNA from Escherichia coli was cleaved at single internucleotide bonds using ribonuclease H in the presence of appropriate chimeric oligonucleotides; the individual cleavage sites were between residues 384 and 385, 867 and 868, 1045 and 1046, and 2510 and 2511, with an additional fortuitous cleavage at positions 1117 and 1118. In each case, the 3'' terminus of the 5'' fragment was ligated to radioactively labeled 4-thiouridine 5''-,3''-biphosphate ("psUp"), and the cleaved 23S rRNA carrying this label was reconstituted into 50S subunits. The 50S subunits were able to associate normally with 30S subunits to form 70S ribosomes. Intra-RNA crosslinks from the 4-thiouridine residues were induced by irradiation at 350 nm, and the crosslink sites within the 23S rRNA were analyzed. The rRNA molecules carrying psUp at positions 867 and 1117 showed crosslinks to nearby positions on the opposite strand of the same double helix where the cleavage was located, and no crosslinking was detected from position 2510. In contrast, the rRNA carrying psUp at position 384 showed crosslinking to nt 420 (and sometimes also to 416 and 425) in the neighboring helix in 23S rRNA, and the rRNA with psUp at position 1045 gave a crosslink to residue 993. The latter crosslink demonstrates that the long helix 41-42 of the 23S rRNA (which carries the region associated with GTPase activity) must double back on itself, forming a "U-turn" in the ribosome. This result is discussed in terms of the topography of the GTPase region in the 50S subunit, and its relation to the locations of the 5S rRNA and the peptidyl transferase center.  相似文献   

4.
Yeast 25S rRNA was reported to contain a single cytosine methylation (m5C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m5C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1 and Nop2 to be responsible for these two cytosine methylations, respectively. Both proteins are highly conserved, which correlates with the presence of two m5C residues at identical positions in higher eukaryotes, including humans. The human homolog of yeast Nop2, p120 has been discovered to be upregulated in various cancer tissues, whereas the human homolog of Rcm1, NSUN5 is completely deleted in the William''s-Beuren Syndrome. The substrates and function of both human homologs remained unknown. In the present study, we also provide insights into the significance of these two m5C residues. The loss of m5C2278 results in anisomycin hypersensitivity, whereas the loss of m5C2870 affects ribosome synthesis and processing. Establishing the locations and enzymes in yeast will not only help identifying the function of their homologs in higher organisms, but will also enable understanding the role of these modifications in ribosome function and architecture.  相似文献   

5.
We have studied the accessibility of 5'- 32P labeled oocyte and somatic 5S rRNAs from the fish Misgurnus fossilis L. to S1, T1 and cobra venom nucleases and have found that the cleavage sites of 5S rRNAs closely related in primary structures differ in these molecules. The data of nuclease hydrolyses revealed the existence of two conformers corresponding to renatured and partially denatured somatic 5S rRNA and capable of mutual interconversions. The exposed cytosine residues were located in oocyte and somatic 5S rRNAs converted into uridine ones by sodium bisulfite treatment. The data have been used to construct the secondary structure models of somatic and oocyte 5S rRNAs by means of specially devised computer program. These models differ in their 5'-halves which contain all the nucleotide substitutions in the primary structure, all differences in location of the exposed cytosine residues, and finally, in the cleavage pattern by the nucleases used.  相似文献   

6.
The secondary and tertiary structures of Xenopus oocyte and somatic 5S rRNAs were investigated using chemical and enzymatic probes. The accessibility of both RNAs towards single-strand specific nucleases (T1, T2, A and S1) and a helix-specific ribonuclease from cobra venom (RNase V1) was determined. The reactivity of nucleobase N7, N3 and N1 positions towards chemical probes was investigated under native (5 mM MgCl2, 100 mM KCl, 20 degrees C) and semi-denaturing (1 mM EDTA, 20 degrees C) conditions. Ethylnitrosourea was used to identify phosphates not reactive towards alkylation under native conditions. The results obtained confirm the presence of the five helical stems predicted by the consensus secondary structure model of 5S rRNA. The chemical reactivity data indicate that loops C and D are involved in a number of tertiary interactions, and loop E folds into an unusual secondary structure. A comparison of the data obtained for the two types of Xenopus 5S rRNA indicates that the conformations of the oocyte and somatic 5S rRNAs are very similar. However, the data obtained with nucleases under native conditions, and chemical probes under semi-denaturing conditions, reveal that helices III and IV in the somatic 5S rRNA are less stable than the same structures in oocyte 5S rRNA. Using chimeric 5S rRNAs, it was possible to demonstrate that the relative resistance of oocyte 5S rRNA to partial denaturation in 4 M urea is conferred by the five oocyte-specific nucleotide substitutions in loop B/helix III. In contrast, the superior stability of oocyte 5S rRNA in the presence of EDTA is related to a single C substitution at position 79.  相似文献   

7.
8.
Protonation of cytosine in DNA   总被引:4,自引:0,他引:4  
C Zimmer  H Venner 《Biopolymers》1966,4(10):1073-1079
Spectrophotometric acid titrations of DNA samples of different GC content were performed at different wavelengths. From the acid titration profile and absorbance changes of deoxycytidine-5′-monophosphate and DNA the extent of protonated cytosine within the DNA double-stranded molecule was estimated (pK 3.65 at 25°C. in 0.02M KCl). At constant counterion concentration and temperature the maximum of protonated cytosine in DNA before denaturation occurs depends on the base composition and can exceed 50%. The thermal stability of the DNA secondary structure is strongly reduced with increasing amount of ionized cytosine residues. The degree of protonation of cytosine in DNA is decreased with increasing counterion concentration.  相似文献   

9.
K Miura  S Tsuda  F Harada    T Ueda 《Nucleic acids research》1983,11(17):5893-5901
Sulfhydrolysis of cytosine residues to 4-thiouracil residues in mouse U6 snRNA was carried out to examine the secondary structure of U6 snRNA. The cytosine residues at positions 6, 42 and 68 were modified significantly, and at positions 11, 19 (or/and 25), 61 and 66 in moderate extent. Based on the result, the plausible secondary structure of U6 snRNA is discussed.  相似文献   

10.
Sequence comparison of several RNA m(5)C methyltransferases identifies two conserved cysteine residues that belong to signature motifs IV and VI of RNA and DNA methyltransferases. While the cysteine of motif IV is used as the nucleophilic catalyst by DNA m(5)C methyltransferases, this role is fulfilled by the cysteine of motif VI in Escherichia coli 16S rRNA m(5)C967 methyltransferase, but whether this conclusion applies to other RNA m(5)C methyltransferases remains to be verified. Yeast tRNA m(5)C methyltransferase Trm4p is a multisite-specific S-adenosyl-L-methionine-dependent enzyme that catalyzes the methylation of cytosine at C5 in several positions of tRNA. Here, we confirm that Cys310 of motif VI in Trm4p is essential for nucleophilic catalysis, presumably by forming a covalent link with carbon 6 of cytosine. Indeed, the enzyme is able to form a stable covalent adduct with the 5-fluorocytosine-containing RNA substrate analog, whereas the C310A mutant protein is inactive and unable to form the covalent complex.  相似文献   

11.
12.
13.
The effect of freeze-thaw (FT) cycles on Arctic tundra soil bacterial community was studied in laboratory microcosms. FT-induced changes to the bacterial community were followed over a 60-day period by terminal restriction fragment length polymorphism (T-RFLP) profiles of amplified 16S rRNA genes and reverse transcribed 16S rRNA. The main phylotypes of the active, RNA-derived bacterial community were identified using clone analysis. Non-metric multidimensional scaling ordination of the T-RFLP profiles indicated some shifts in the bacterial communities after three to five FT cycles at −2, −5, and −10°C as analyzed both from the DNA and rRNA. The dominating T-RFLP peaks remained the same, however, and only slight variation was generally detected in the relative abundance of the main T-RF sizes of either DNA or rRNA. T-RFLP analysis coupled to clone analysis of reverse transcribed 16S rRNA indicated that the initial soil was dominated by members of Bacteroidetes, Acidobacteria, Alpha-, Beta-, and Gammaproteobacteria. The most notable change in the rRNA-derived bacterial community was a decrease in the relative abundance of a Betaproteobacteria-related phylotype after the FT cycles. This phylotype decreased, however, also in the control soil incubated at constant +5°C suggesting that the decrease was not directly related to FT sensitivity. The results indicate that FT caused only minor changes in the bacterial community structure.  相似文献   

14.
Bisulfite genomic sequencing is a widely used technique foranalyzing cytosine-methylation of DNA. By treating DNA withbisulfite, cytosine residues are deaminated to uracil, whileleaving 5-methylcytosine largely intact. Subsequent PCR andnucleotide sequence analysis permit unequivocal determinationof the methylation status at cytosine residues. A major caveatassociated with the currently practiced procedure is that ittakes 16–20 hr for completion of the conversion of cytosineto uracil. Here we report that a complete deamination of cytosineto uracil can be achieved in shorter periods by using a highlyconcentrated bisulfite solution at an elevated temperature.Time course experiments demonstrated that treating DNA with9 M bisulfite for 20 min at 90°C or 40 min at 70°C allcytosine residues in the DNA were converted to uracil. Underthese conditions, the majority of 5-methylcytosines remainedintact. When a high molecular weight DNA derived from a cellline (containing a number of genes whose methylation statuswas known) was treated with bisulfite under the above conditionsand amplified and sequenced, the results obtained were consistentwith those reported in the literature. Although some degradationof DNA occurred during this process, the amount of treated DNArequired for the amplification was nearly equal to that requiredfor the conventional bisulfite genomic sequencing procedure.The increased speed of DNA methylation analysis with this novelprocedure is expected to advance various aspects of DNA sciences.  相似文献   

15.
Chemical modification of mouse 5 S rRNA with kethoxal was carried out to examine the secondary structure. The guanine residues located at positions 37, 41, 56, 66, 75 and 89 were modified. The relative rates of reaction are in the order G37, G56, G89, G66, G41, G75 at 28 degrees C and G37, G41, G56, G89, G75, G66 at 35 degrees C. These results support a secondary structure model containing 5 helices and 5 loops and indicate that the region around position 37 is the most exposed in higher-order structure.  相似文献   

16.
M F Brink  M P Verbeet    H A de Boer 《The EMBO journal》1993,12(10):3987-3996
The postulated central pseudoknot formed by regions 9-13/21-25 and 17-19/916-918 of 16S rRNA of Escherichia coli is phylogenetically conserved in prokaryotic as well eukaryotic species. This pseudoknot is located at the center of the secondary structure of the 16S rRNA and connects the three major domains of this molecule. We have introduced mutations into this pseudoknot by changing the base-paired residues C18 and G917, and the effect of such mutations on the ribosomal activity was studied in vivo, using a 'specialized' ribosome system. As compared with ribosomes having the wild-type pseudoknot, the translational activity of ribosomes containing an A, G or U residue at position 18 was dramatically reduced, while the activity of mutant ribosomes having complementary bases at positions 18 and 917 was at the wild-type level. The reduced translational activity of those mutants that are incapable of forming a pseudoknot was caused by their inability to form 70S ribosomal complexes. These results demonstrate that the potential formation of a central pseudoknot in 16S rRNA with any base-paired residues at positions 18 and 917 is essential to complete the initiation process.  相似文献   

17.
Sedimentation coefficients and apparent molecular masses of 5.8S rRNA from rat liver and yeast (Saccharomyces cerevisiae) depend considerably on the ionic strength and the kind of ions in solution. At 20°C the sedimentation coefficient of 5.8S rRNA in 10 mm sodium cacodylate, pH 7.0, amounts to 5.1 ± 0.2 S. By addition of NaCl up to 1.1 m the data increase reversibly to 6.1 ± 0.2 S (rat liver) or 5.4 ± 0.1 S (yeast) without significant changes of the molar mass (52 000 ± 2000) g/mol. Similar effects but with different extent were obtained using KCl or LiCl. These results can be explained by counterion effects on the conformation and changing of the water shell surrounding the RNA molecule. Short heat incubation (5 min at 65°C) and immediate cooling of rat liver 5.8S rRNA lead to dimer or oligomer formation. Its portions depend strongly on RNA concentration and are enhanced also with increasing NaCl concentration and incubation temperature as can be seen fro higher sedimentation coefficients and molecular masses as well as from additional bands in the electrophoretic pattern. At 20°C MgCl2 provokes, in concentrations up to 1.5 mm, a reversible increase of sedimentation coefficients of rat liver 5.8S rRNA to 6.65 ± 0.1 S whereas the molecular mass remains unchanged indicating strong Mg++ effects on conformation and/or water shell of the 5.8S rRNA. A further increase of sedimentation coefficients up to 8.2 ± 0.1 S combined with higher apparent molar masses up to 90 000 g/mol was observed in the presence of 30 to 50 mm MgCl2. In this concentration range of Mg++ the association constants of 5.8S rRNA dimerization increase from about 105to 3 × 107m?1. After removal of free Mg++ by addition of EDTA the 5.8S rRNA dimers dissociate if no incubation step at higher temperature in involved. The Mg++ induced 5.8S rRNA dimers differ in their stability from those formed by incubation at 65°C in the presence of higher concentrations of monovalent ions.  相似文献   

18.
In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 °C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C10–C36 n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5°C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0°C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0°C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5°C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures ≤5°C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.  相似文献   

19.
20.
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号