首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe a method for the production of high-titer stocks of human immunodeficiency virus type 1 (HIV-1) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV G). VSV G pseudotypes provide several advantages over other retroviral envelope proteins. The VSV G envelope is mechanically stable, enabling ultracentrifugal concentration of virions to high titers, and VSV G has a broad host range, enabling infection of many mammalian and nonmammalian cell types. VSV G pseudotypes of HIV-1 are useful for the study of HIV infection and replication kinetics and for the study of the function of specific viral proteins. We describe applications for the study of HIV-1 using VSV G pseudotypes. Additionally, we describe a method for pseudotyping retroviral vectors with VSV G. The same advantages of VSV G pseudotypes of HIV-1 apply to retroviral vectors; VSV G pseudotyped retroviral vectors may be used to introduce genes of interest into a wide variety of cell lines.  相似文献   

2.
N Emi  T Friedmann    J K Yee 《Journal of virology》1991,65(3):1202-1207
Mixed infection of a cell by vesicular stomatitis virus (VSV) and retroviruses results in the production of progeny virions bearing the genome of one virus encapsidated by the envelope proteins of the other. The mechanism for the phenomenon of pseudotype formation is not clear, although specific recognition of a viral envelope protein by the nucleocapsid of an unrelated virus is presumably involved. In this study, we used Moloney murine leukemia virus (MoMLV)-based retroviral vectors encoding the gene for neomycin phosphotransferase to investigate the interaction between the VSV G protein and the retroviral nucleocapsid during the formation of MoMLV(VSV) pseudotypes. Our results show that VSV G protein can be incorporated into the virions of retrovirus in the absence of other VSV-encoded proteins or of retroviral envelope protein. Infection of hamster cells by MoMLV(VSV) pseudotypes gave rise to neomycin phosphotransferase-resistant colonies, and addition of anti-VSV serum to the virus preparations completely abolished the infectivity of MoMLV(VSV) pseudotypes. It should be possible to use existing mutants of VSV G protein in the system described here to identify the signals that are important for the formation of MoMLV(VSV) pseudotypes.  相似文献   

3.
One mechanism for expanding the cellular tropism of a virus is through the formation of phenotypically mixed particles or pseudotypes, a process commonly occurring during viral assembly in cells infected with two or more viruses. We report here that dual infection of cells with human immunodeficiency virus (HIV) and a murine amphotropic retrovirus leads to the production of HIV pseudotypes that have acquired the host range of the amphotropic retrovirus and are capable of infecting not only CD4- human cells but also mouse cells. The replication of the HIV pseudotypes in the various CD4- cells was determined by measuring the appearance of HIV antigens in the supernatants, by cocultivation of CD4+ CEM cells with the infected CD4- cells, and in some cases by assaying the culture supernatants directly for infectious virus. Of the cells tested, human foreskin fibroblasts were the best host cells, and by in situ cytohybridization, we were able to document that all cells in the culture were infected. In addition, the temporal appearance of HIV-specific proteins in the HIV pseudotype-infected fibroblasts was similar to that seen in CD4+ CEM cells. If the human fibroblasts were first infected with the amphotropic retrovirus, they demonstrated the property of superinfection exclusion and were resistant to subsequent infection by the HIV pseudotype. In other cell lines, including the human glioblastoma-derived cell line U373MG, HeLa cells, BALB/c mouse embryo cells, and SC-1 wild mouse cells, although the HIV pseudotype infection appeared to be less efficient, substantial amounts of HIV were nevertheless produced. These results indicate that the HIV (amphotropic retrovirus) pseudotypes may be useful for studying the molecular biology of HIV infections in a wide range of cells.  相似文献   

4.
Viruses interact with various permissive and restrictive factors in host cells throughout their replication cycle. Cell lines that are non-permissive to viral infection have been particularly useful in discovering host cell proteins involved in viral life cycles. Here we describe the characterization of a human myeloid leukemia cell line, KG-1, that is resistant to infection by retroviruses and a Rhabdovirus. We show that KG-1 cells are resistant to infection by Vesicular Stomatits Virus as well as VSV Glycoprotein (VSVG) pseudotyped retroviruses due to a defect in binding. Moreover our results indicate that entry by xenotropic retroviral envelope glycoprotein RD114 is impaired in KG-1 cells. Finally we characterize a post- entry block in the early phase of the retroviral life cycle in KG-1 cells that renders the cell line refractory to infection. This cell line will have utility in discovering proteins involved in infection by VSV and HIV-1.  相似文献   

5.
6.
The Asian wild mouse species Mus caroli harbors an endogenous retrovirus (McERV) that is closely related to but distinct from the endogenous retrovirus family defined by the Mus dunni endogenous virus and the Mus musculus endogenous retrovirus. McERV could infect some cell types from humans, dogs, and rats, but not all, and did not infect any mouse cell line tested. Because of its interesting host range and proposed ancestral relationship to primate retroviruses and because none of the entry receptors for this family of retroviruses had been identified, we began a search for the McERV receptor. We determined the chromosomal location of the receptor gene in the human genome by phenotypic screening of the G3 human-hamster radiation hybrid cell line panel and confirmed the localization by assaying for receptor activity conferred by bacterial artificial chromosome (BAC) clones spanning the region. We next localized the gene more precisely in one positive BAC by assaying for receptor activity following BAC digestion with several restriction enzymes that cleaved different sets of genes, and we confirmed that the final candidate gene, plasmolipin (PLLP; TM4SF11), is the novel receptor by showing that the expression of the human PLLP cDNA renders hamster and mouse cells susceptible to McERV infection. PLLP functions as a voltage-dependent potassium ion channel and is expressed primarily in kidney and brain, helping to explain the limited range of cell types that McERV can infect. Interestingly, mouse PLLP also functioned well as a receptor for McERV but was simply not expressed in the mouse cell types that we originally tested.  相似文献   

7.
The Edmonston strain of measles virus (MV) that utilizes the human CD46 as the cellular receptor produced cytopathic effects (CPE) in all of the primate cell lines examined. In contrast, the wild-type MV strains isolated in a marmoset B-cell line B95a (the KA and Ichinose strains) replicated and produced CPE in some but not all of the primate lymphoid cell lines. To determine the mechanism underlying this difference in cell tropism, we used a recently developed recombinant vesicular stomatitis virus (VSV) containing as a reporter the green fluorescent protein gene in lieu of the VSV G protein gene (VSVDeltaG*). MV glycoproteins were efficiently incorporated into VSVDeltaG*, producing the VSV pseudotypes. VSVDeltaG* complemented with VSV G protein efficiently infected all of the cell lines tested. The VSV pseudotype bearing the Edmonston hemagglutinin (H) and fusion (F) protein (VSVDeltaG*-EdHF) infected all cell lines in which the Edmonston strain caused CPE, including the rodent cell lines to which the human CD46 gene was stably transfected. The pseudotype bearing the wild-type KA H protein and Edmonston F protein (VSVDeltaG*-KAHF) infected all lymphoid cell lines in which the wild-type MV strains caused CPE as efficiently as VSVDeltaG*-EdHF, but it did not infect any of the cell lines resistant to infection with the KA strain. The results indicate that the difference in cell tropism between these MV strains was largely determined by virus entry, in which the H proteins of respective MV strains play a decisive role.  相似文献   

8.
Restriction of multiple divergent retroviruses by Lv1 and Ref1   总被引:20,自引:0,他引:20  
The mouse gene Fv1 encodes a saturable restriction factor that selectively blocks infection by N-tropic or B-tropic murine leukemia virus (MLV) strains. Despite the absence of an Fv1 gene, a similar activity is present in humans that blocks N-MLV infection (Ref1). Moreover, some non-human primate cell lines express a potentially related inhibitor of HIV-1 and/or SIVmac infection (Lv1). Here, we examine the spectrum of retrovirus-restricting activities expressed by human and African green monkey cell lines. Human cells restrict N-MLV and equine infectious anemia virus (EIAV), but not HIV-1, HIV-2, SIVmac or SIVagm, whilst AGM cells restrict N-MLV, EIAV, HIV-1, HIV-2 and SIVmac. Remarkably, in each example examined, restriction of infection by a given retrovirus can be abrogated at least partially by saturation with another retrovirus, provided that it is also restricted but regardless of whether it is closely related. These data suggest that restriction factors in human and non-human primate cells are able to recognize and block infection by multiple, widely divergent retroviruses and that the factors themselves may be related.  相似文献   

9.
Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.  相似文献   

10.
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5-7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (approximately 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections.  相似文献   

11.
Hepatitis C virus (HCV) causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma in addition to acute hepatitis. The HCV genome encodes two envelope glycoproteins, E1 and E2. To investigate the role of E1 and E2 in HCV infection, we used a recombinant vesicular stomatitis virus (VSV), VSVdeltaG*, harboring the green fluorescent protein gene instead of the VSV G envelope protein gene. It was complemented with the native form of E1 and E2, or E1 or E2 alone, to make HCV pseudotypes VSVdeltaG*(HCV), VSVdeltaG*(E1), and VSVdeltaG*(E2). Neither E1 nor E2 expression was detected on the cell surface, as reported. Unlike previous reports, infectious activities of VSVdeltaG*(HCV), VSVdeltaG*(E1) and VSVdeltaG*(E2) pseudotypes were detected under conditions where VSV was completely neutralized by anti-VSV. We could enhance the infectious titers 100-fold by sonication upon virus harvest. Bovine lactoferrin efficiently inhibited infection by VSVdeltaG*(HCV) as well as VSVdeltaG*(E2), as the interaction between E2 and lactoferrin has been thought to contribute to the inhibition of HCV infectivity. VSVdeltaG*(HCV) infected many adherent cell lines, including hepatic cell lines, but not most hematopoietic cell lines. Treatment of cells with trypsin, tunicamycin, or sulfated polysaccharides before infection reduced the infectivity of VSVdeltaG*(HCV) by about 90%, suggesting that a cell surface protein(s) with sugar chains plays an important role in HCV infection. The VSV pseudotypes developed here would be useful for analyzing the early stages of HCV infection.  相似文献   

12.
Human cytomegalovirus (HCMV) is commonly found in the brains of patients with AIDS and in some cases can be detected in the same cells as can human immunodeficiency virus type 1 (HIV-1). In this study, we analyzed the patterns of replication of HIV-1 and HCMV in singly infected cells and the effects of dual infection in human brain-derived cell lines of three different origins: neuroblastoma cell lines SK-N-MC and SY5Y; astrocytoma/glioblastoma cell lines U373-MG and Hs 683; and undifferentiated glioblastoma cell lines A172 and T98G. To bypass the restriction at the adsorption/penetration step in these CD4-negative cells, we used HIV-1 (amphotropic retrovirus) pseudotypes. These HIV-1 pseudotypes infected the majority of the cells in the cultures and expressed high levels of HIV-1 gene products in all except the SY5Y cells. The cell lines differed in the ability to support HCMV infection, but coinfection with HIV-1 had no effect on HCMV replication. The A172 cells were completely nonpermissive for HCMV gene expression, while HCMV replication in the singly infected T98G and SK-N-MC cell lines was restricted at the level of some early gene products. This resulted in complete and partial inhibition, respectively, of viral DNA synthesis. Dual infection of the A172, T98G, and SK-N-MC cells had no effect on HIV-1 replication. The other three cell lines, U373-MG, Hs 683, and SY5Y, were fully permissive for HCMV replication. In the U373-MG and Hs 683 cells, HCMV markedly inhibited the synthesis of HIV-1 gene products. In contrast, a transient stimulation of HIV-1 production followed by a repression was observed in the dually infected SY5Y cells. We conclude from these results that under conditions in which both HIV-1 and HCMV can undergo fully permissive infection, HCMV can repress HIV-1 gene expression. In cells in which HCMV replication is limited but HIV-1 replicates well, there is no effect on HIV-1 gene expression. However, activation of HIV-1, at least transiently, may occur in cells in which HIV-1 gene expression is limited. These studies suggest that a threshold level of some HIV-1 gene product(s) may obscure activation or promote repression of HIV replication by HCMV.  相似文献   

13.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

14.
Formation of pseudotypes between murine RNA tumor viruses and vesicular stomatitis virus (VSV) has been confirmed. Pseudotypes of VSV genomes coated by the surface envelope from an N-tropic tumor virus grew equally well in cells homozygous for either the Fv-1n or Fv-1b alleles. Therefore, the product of the Fv-1 locus, which restricts growth of murine RNA tumor viruses, must act on an intracellular aspect of tumor virus replication, a step after attachment and penetration.  相似文献   

15.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5alpha and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a 'fossil record' of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5alpha proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species-dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

16.
The assembly and release of retroviruses from the host cells requires a coordinated series of interactions between viral structural proteins and cellular trafficking pathways. Although a number of cellular factors involved in retrovirus assembly have been identified, it is likely that retroviruses utilize additional trafficking factors to expedite their assembly and budding that have not yet been defined. We performed a screen using an siRNA library targeting host membrane trafficking genes in order to identify new host factors that contribute to retrovirus assembly or release. We utilized two retroviruses that follow very distinct assembly pathways, HIV-1 and Mason-Pfizer monkey virus (M-PMV) in order to identify host pathways that are generally applicable in retrovirus assembly versus those that are unique to HIV or M-PMV. Here we report the identification of 24 host proteins identified in the screen and subsequently validated in follow-up experiments as contributors to the assembly or release of both viruses. In addition to identifying a number of previously unsuspected individual trafficking factors, we noted multiple hits among proteins involved in modulation of the actin cytoskeleton, clathrin-mediated transport pathways, and phosphoinositide metabolism. Our study shows that distant genera of retroviruses share a number of common interaction strategies with host cell trafficking machinery, and identifies new cellular factors involved in the late stages of retroviral replication.  相似文献   

17.
Little is known about the mechanisms used by enveloped viruses to separate themselves from the cell surface at the final step of budding. However, small sequences in the Gag proteins of several retroviruses (L domains) have been implicated in this process. A sequence has been identified in the M proteins of rhabdoviruses that closely resembles the PPPPY motif in the L domain of Rous sarcoma virus (RSV), an avian retrovirus. To evaluate whether the PPPY sequence in vesicular stomatitis virus (VSV) M protein has an activity analogous to that of the retroviral sequence, M-Gag chimeras were characterized. The N-terminal 74 amino acids of the VSV (Indiana) M protein, including the PPPY motif, was able to replace the L domain of RSV Gag and allow the assembly and release of virus-like particles. Alanine substitutions in the VSV PPPY motif severely compromised the budding activity of this hybrid protein but not that of another chimera which also contained the RSV PPPPY sequence. We conclude that this VSV sequence is functionally homologous to the RSV L domain in promoting virus particle release, making this the first example of such an activity in a virus other than a retrovirus. Both the RSV and VSV motifs have been shown to interact in vitro with certain cellular proteins that contain a WW interaction module, suggesting that the L domains are sites of interaction with unknown host machinery involved in virus release.  相似文献   

18.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5α and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a ‘fossil record’ of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5α proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species–dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

19.
Pseudotyped retroviruses have important applications as vectors for gene transfer and gene therapy and as tools for the study of viral glycoprotein function. Recombinant Moloney murine leukemia virus (Mo-MuLV)-based retrovirus particles efficiently incorporate the glycoproteins of the alphavirus Ross River virus (RRV) and utilize them for entry into cells. Stable cell lines that produce the RRV glycoprotein-pseudotyped retroviruses for prolonged periods of time have been constructed. The pseudotyped viruses have a broadened host range, can be concentrated to high titer, and mediate stable transduction of genes into cells. The RRV glycoprotein-pseudotyped retroviruses and the cells that produce them have been employed to demonstrate that RRV glycoprotein-mediated viral entry occurs through endocytosis and that membrane fusion requires acidic pH. Alphavirus glycoprotein-pseudotyped retroviruses have significant advantages as reagents for the study of the biochemistry and prevention of alphavirus entry and as preferred vectors for stable gene transfer and gene therapy protocols.  相似文献   

20.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号