首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone-induced cardiac hypertrophy is similar to that observed in physiological hypertrophy, which is associated with high cardiac contractility and increased alpha-myosin heavy chain (alpha-MHC, the high ATPase activity isoform) expression. In contrast, angiotensin II (Ang II) induces an increase in myocardial mass with a compromised contractility accompanied by a shift from alpha-MHC to the fetal isoform beta-MHC (the low ATPase activity isoform), which is considered as a pathological hypertrophy and inevitably leads to the development of heart failure. The present study is designed to assess the effect of thyroid hormone on angiotensin II-induced hypertrophic growth of cardiomyocytes in vitro. Cardiomyocytes were prepared from hearts of neonatal Wistar rats. The effects of Ang II and 3,3',5-triiodo-thyronine (T3) on incorporations of [3H]-thymine and [3H]-leucine, MHC isoform mRNA expression, PKC activity, and PKC isoform protein expression were studied. Ang II enhanced [3H]-leucine incorporation, beta-MHC mRNA expression, PKC activity, and PKCepsilon expression and inhibited alpha-MHC mRNA expression in cardiomyocytes. T3 treatment prevented Ang II-induced increases in PKC activity, PKCepsilon, and beta-MHC mRNA overexpression and favored alpha-MHC mRNA expression. Thyroid hormone appears to be able to reprogram gene expression in Ang II-induced cardiac hypertrophy, and a PKC signal pathway may be involved in such remodeling process.  相似文献   

2.
3.
Li ZB  Gao YQ  Tang ZS 《生理学报》1998,50(5):551-556
我们前期研究表明运动性和高血压性心肌肥大细胞表型变化在结构、功能和代谢方面均表现不同,但两者基因表达的不同特征尚不清楚。本实验采用Northern分子杂交方法对游泳运动12周大鼠和自发性高血压大鼠(SHR)肥大心脏心肌初级和次级应答基因表达进行比较研究。结果表明,游泳大鼠心系数比对照大鼠提高26%(P〈0.01),心肌c-fos和心房钠尿肽(ANF)基因表达在最后一次运动后即刻明显增强,在运动后2  相似文献   

4.
The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed alpha-MHC or from thyroidectomized rats that expressed beta-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocities were measured at several loads during steady-state maximal Ca(2+) activation (P(pCa4.5)). MHC expression was determined after mechanical measurements using SDS-PAGE. Both alpha-MHC and beta-MHC myocytes generated similar maximal Ca(2+)-activated force, but alpha-MHC myocytes shortened faster at all loads and generated approximately 170% greater peak normalized power output. Additionally, the curvature of force-velocity relationships was less, and therefore the relative load optimal for power output (F(opt)) was greater in alpha-MHC myocytes. F(opt) was 0.31 +/- 0.03 P(pCa4.5) and 0.20 +/- 0.06 P(pCa4.5) for alpha-MHC and beta-MHC myocytes, respectively. These results indicate that MHC expression is a primary determinant of the shape of force-velocity relationships, velocity of loaded shortening, and overall power output-generating capacity of individual cardiac myocytes.  相似文献   

5.
6.
Fructose feeding has been shown to induce the cardiac alpha-myosin heavy chain (MHC) expression and protect the heart from ischemia- and reperfusion-mediated cell injury. This study was designed to investigate the mechanism involved in the effect of this sugar on MHC gene expression and cardiac protection. Adult mice were fed with a 6-propyl-2-thiouracil (PTU) diet or PTU combined with a fructose-rich diet. PTU treatment made animals hypothyroid and that resulted in total replacement of cardiac alpha-MHC with the beta-MHC isoform. Addition of fructose in the PTU diet led to reexpression of the alpha-MHC isoform to a significant level. Similar induction of alpha-MHC expression was also seen when PTU diet was combined with resveratrol, an agonist of sirtuin (SIRT) 1 deacetylase. Analysis of heart lysate of these animals indicated that fructose feeding augmented the NAD-to-NADH ratio and the cardiac SIRT1 levels, thus suggesting a role of SIRT1 in fructose-mediated activation of alpha-MHC isoform. To analyze a direct effect of SIRT1 on MHC isoform expression, we generated transgenic mice expressing SIRT1 in the heart. Treatment of these transgenic mice with PTU diet did not lead to disappearance of alpha-MHC, as it did in the nontransgenic animals. SIRT1 overexpression also activated the alpha-MHC gene promoter in transient transfection assays, thus confirming a role of SIRT1 in the induction of alpha-MHC expression. Fructose feeding also attenuated the MHC isoform shift and blocked the cardiac hypertrophy response associated with pressure overload, which was again associated with the induction of cardiac SIRT1 levels. These results demonstrate that fructose feeding protects the heart by induction of the SIRT1 deacetylase and highlight its role in the induction of alpha-MHC gene expression.  相似文献   

7.
Cardiac myosin heavy chain expression undergoes a perinatal transition from predominance of beta-MHC to alpha-MHC. In the current study, we tested the effects of glucocorticoids in this early transition period, by treating pregnant rats with dexamethasone on gestational days 17, 18 and 19, using doses below (0.05 mg/kg), at (0.2 mg/kg) or above (0.8 mg/kg) the threshold for growth retardation. Cardiac MHC isoforms were resolved with a denaturing SDS-PAGE system, followed by quantitative densitometry. In normal animals alpha-MHC was only 10% of the total on gestational day 18 but rose to 35% by postnatal day 1, and to 95% by the end of the first month postpartum. During the early phase of this transition, the lowest dose of dexamethasone significantly promoted alpha-MHC expression without inhibiting body or heart growth; regression analysis indicated a 40% increase in the slope of MHC isoform transition with respect to tissue weight. In contrast, the higher, growth-retarding doses of dexamethasone either failed to enhance alpha-MHC expression or caused biphasic changes, with inhibition at ages corresponding to the onset of weight deficits; regression analysis indicated that the effects of the higher doses on MHC could all be accounted for by changes in tissue weight. Glucocorticoid levels rise substantially in the period surrounding parturition, and serve to program the development and coupling of adenylate cyclase to membrane receptors; because adenylate cyclase has been shown to elicit the beta-MHC to alpha-MHC transition in vitro, our results suggest that glucocorticoids, along with thyroid hormone and beta-adrenergic stimulation, influence the ontogenetic program of MHC isoform transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Myosin heavy chain (MHC) isoforms alpha and beta have intrinsically different ATP hydrolysis activities (ATPase) and therefore cross-bridge cycling rates in solution. There is considerable evidence of altered MHC expression in rodent cardiac disease models; however, the effect of incremental beta-MHC expression over a wide range on the rate of high-strain, isometric cross-bridge cycling is yet to be ascertained. We treated male rats with 6-propyl-2-thiouracil (PTU; 0.8 g/l in drinking water) for short intervals (6, 11, 16, and 21 days) to generate cardiac MHC patterns in transition from predominantly alpha-MHC to predominantly beta-MHC. Steady-state calcium-dependent tension development and tension-dependent ATP consumption (tension cost; proportional to cross-bridge cycling) were measured in chemically permeabilized (skinned) right ventricular muscles at 20 degrees C. To assess dynamic cross-bridge cycling kinetics, the rate of force redevelopment (ktr) was determined after rapid release-restretch of fully activated muscles. MHC isoform content in each experimental muscle was measured by SDS-PAGE and densitometry. alpha-MHC content decreased significantly and progressively with length of PTU treatment [68 +/- 5%, 58 +/- 4%, 37 +/- 4%, and 27 +/- 6% for 6, 11, 16, and 21 days, respectively; P < 0.001 (ANOVA)]. Tension cost decreased, linearly, with decreased alpha-MHC content [6.7 +/- 0.4, 5.6 +/- 0.5, 4.0 +/- 0.4, and 3.9 +/- 0.3 ATPase/tension for 6, 11, 16, and 21 days, respectively; P < 0.001 (ANOVA)]. Likewise, ktr was significantly and progressively depressed with length of PTU treatment [11.1 +/- 0.6, 9.1 +/- 0.5, 8.2 +/- 0.7, and 6.2 +/- 0.3 s(-1) for 6, 11, 16, and 21 days, respectively; P < 0.05 (ANOVA)] Thus cross-bridge cycling, under high strain, for alpha-MHC is three times higher than for beta-MHC. Furthermore, under isometric conditions, alpha-MHC and beta-MHC cross bridges hydrolyze ATP independently of one another.  相似文献   

9.
10.
Thyroid hormone regulates the expression of ventricular myosin isoenzymes by causing an accumulation of alpha-myosin heavy chain (MHC) mRNA and inhibiting expression of beta-MHC mRNA. However, the mechanism of thyroid hormone action has been difficult to examine in vivo because of its diverse actions. Accordingly, hormonal control of expression of six MHC isoform mRNAs and cardiac and skeletal alpha-actin mRNAs was studied in primary cultures of fetal rat heart myocytes grown in defined medium. The results indicate that in the absence of thyroid hormone, cultured heart cells express predominantly beta-MHC and cardiac alpha-actin mRNAs. Addition of 3,5,3'-triiodo-L-thyronine (T3) caused a rapid induction of alpha-MHC mRNA and decreased beta-MHC mRNA levels without affecting the skeletal muscle MHC mRNAs. There was an almost parallel change in the myosin isoenzymes. Cardiac alpha-actin mRNA levels were transiently increased by T3 treatment, but skeletal alpha-actin was unaffected. Elimination of insulin and epithelial growth factor from the medium did not alter the effects of T3 on cardiac MHC mRNA expression. Addition of various adrenergic agents to the medium had no appreciable effect on cardiac MHC mRNA expression despite the presence of functionally coupled alpha- and beta-adrenergic receptors. Addition of steroid hormones, muscarinic agents, and glucagon to the medium also had no effect. Thus, under defined conditions, T3 is able to regulate MHC gene expression at a pretranslational level without the need for other exogenous factors.  相似文献   

11.
Expression of voltage-gated K(+) channels encoding the K(+) independent transient outward current in the streptozocin-induced diabetic (DM) rat ventricle was studied to determine the basis for slowed cardiac repolarization in diabetes mellitus. Although hypertrophy was not detected in diabetic rats at 12 wk after streptozocin treatment, ventricular Kv4.2 mRNA levels decreased 41% relative to nondiabetic controls. Kv1.4 mRNA levels increased 179% relative to controls, whereas Kv4.3 mRNA levels were unaffected. Immunohistochemistry and Western blot analysis of the diabetic heart showed that the density of the Kv4.2 protein decreased, whereas Kv1.4 protein increased. Thus isoform switching from Kv4.2 to Kv1.4 is most likely the mechanism underlying the slower kinetics of transient outward K(+) current observed in the diabetic ventricle. Brain Kv1.4, Kv4.2, or Kv4.3 mRNA levels were unaffected by diabetes. Myosin heavy chain (MHC) gene expression was altered with a 32% decrease in alpha-MHC mRNA and a 259% increase in beta-MHC mRNA levels in diabetic ventricle. Low-dose insulin-like growth factor-II (IGF-II) treatment during the last 6 of the 12 wk of diabetes (DM + IGF) protected against these changes in MHC mRNAs despite continued hyperglycemia and body weight loss. IGF-II treatment did not change K(+) channel mRNA levels in DM or control rat ventricles. Thus IGF treatment may prevent some, but not all, biochemical abnormalities in the diabetic heart.  相似文献   

12.
In a rat model of acute myocardial infarction (MI) produced by coronary artery ligation, thyroid hormone metabolism was altered with significant reductions (54%) in serum triiodo-L-thyronine (T(3)), the cellular active hormone metabolite. T(3) has profound effects on the heart; therefore, rats were treated with T(3) after acute MI for 2 or 3 wk, at either replacement or elevated doses, to determine whether cardiac function and gene expression could be normalized. Acute MI resulted in a 50% (P < 0.001) decrease in percent ejection fraction (%EF) with a 32-35% increase (P < 0.01) in compensatory left ventricle (LV) hypertrophy. Treatment of the MI animals with either replacement or elevated doses of T(3) significantly increased %EF to 64 and 73% of control, respectively. Expression levels of several T(3)-responsive genes were altered in the hypertrophied LV after MI, including significant decreases in alpha-myosin heavy chain (MHC), sarcoplasmic reticulum calcium-activated ATPase (SERCA2), and Kv1.5 mRNA, whereas beta-MHC and phospholamban (PLB) mRNA were significantly increased. Normalization of serum T(3) did not restore expression of all T(3)-regulated genes, indicating altered T(3) responsiveness in the postinfarcted myocardium. Although beta-MHC and Kv1.5 mRNA content was returned to control levels, alpha-MHC and SERCA2 were unresponsive to T(3) at replacement doses, and only at higher doses of T(3) was alpha-MHC mRNA returned to control values. The present study showed that acute MI in the rat was associated with a fall in serum T(3) levels, LV dysfunction, and altered expression of T(3)-responsive genes and that T(3) treatment significantly improved cardiac function, with normalization of some, but not all, of the changes in gene expression.  相似文献   

13.
14.
In large mammals there is a correlation between microtubule network densification and contractile dysfunction in severe pressure-overload hypertrophy. In small mammals there is a similar correlation for the shift to beta-myosin heavy chain (MHC), a MHC isoform having a slower ATPase Vmax. In this study, murine left ventricular (LV) pressure overload invoked both mechanisms: microtubule network densification and beta-MHC expression. Cardiac beta-MHC was also augmented without altering tubulin levels by two load-independent means, chemical thyroidectomy and transgenesis. In hypertrophy, contractile function of the LV and its cardiocytes decreased proportionally; microtubule depolymerization restored normal cellular contraction. In hypothyroid mice having a complete shift from alpha-MHC to beta-MHC, contractile function of the LV and its cardiocytes also decreased, but microtubule depolymerization had no effect on cellular contraction. In transgenic mice having a cardiac beta-MHC increase similar to that in hypertrophy, contractile function of the LV and its cardiocytes was normal, and microtubule depolymerization had no effect. Thus, although both mechanisms may cause contractile dysfunction, for the extent of MHC isoform switching seen even in severe murine LV pressure-overload hypertrophy, microtubule network densification appears to have the more important role.  相似文献   

15.
16.
17.
The R403Q mutation in the beta-myosin heavy chain (MHC) was the first mutation to be linked to familial hypertrophic cardiomyopathy (FHC), a primary disease of heart muscle. The initial studies with R403Q myosin, isolated from biopsies of patients, showed a large decrease in myosin motor function, leading to the hypothesis that hypertrophy was a compensatory response. The introduction of the mouse model for FHC (the mouse expresses predominantly alpha-MHC as opposed to the beta-isoform in larger mammals) created a new paradigm for FHC based on finding enhanced motor function for R403Q alpha-MHC. To help resolve these conflicting mechanisms, we used a transgenic mouse model in which the endogenous alpha-MHC was largely replaced with transgenically encoded beta-MHC. A His(6) tag was cloned at the N terminus of the alpha-and beta-MHC to facilitate protein isolation by Ni(2+)-chelating chromatography. Characterization of the R403Q alpha-MHC by the in vitro motility assay showed a 30-40% increase in actin filament velocity compared with wild type, consistent with published studies. In contrast, the R403Q mutation in a beta-MHC backbone showed no enhancement in velocity. Cleavage of the His-tagged myosin by chymotrypsin made it possible to isolate homogeneous myosin subfragment 1 (S1), uncontaminated by endogenous myosin. We find that the actin-activated MgATPase activity for R403Q alpha-S1 is approximately 30% higher than for wild type, whereas the enzymatic activity for R403Q beta-S1 is reduced by approximately 10%. Thus, the functional consequences of the mutation are fundamentally changed depending upon the context of the cardiac MHC isoform.  相似文献   

18.
19.
20.
Four monoclonal antibodies, two raised against alpha-myosin heavy chain (MHC) and two against beta-MHC, have been used to investigate in situ the fiber distribution of alpha- and beta-MHC in rat cardiac ventricles during postnatal development. Eighteen ventricles from 2-day-old to 1-year-old rats were analyzed. Three fiber populations were determined according to their immunofluorescent labeling: one with only alpha-MHC, one only beta-MHC, and one with mixed alpha- and beta-MHC. Large variations in the proportions of these three fiber populations according to age indicate that: (1) alpha-MHC are expressed in all fibers until the second month; they then disappear in a small endocardial fiber population and in a few apparently conductive fibers around the vessels. (2) beta-MHC are also first expressed in all fibers and then disappear gradually from epicardium to endocardium between the second and fourth weeks, except in the conductive fibers; they reappear during the second month sequentially from endocardium to epicardium; and they are then expressed in almost all fibers, except in a small epicardial fiber population, proportionally larger in the right ventricle than in the left. Immunological characterization of MHC isolated from a 22-day-old-rat ventricle, using anti-beta immunoaffinity chromatography, suggests that MHC of conductive fibers are probably at least partially in an alpha beta heterodimeric form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号