首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
为对笠贝科进行系统发育分析,研究通过二代测序技术得到了陆川小笠贝(Lottia luchuana)的线粒体全基因组,对基因组基本结构特点做了分析,发现共含有38个基因,包含13个蛋白质编码基因(PCGs), 2个RNA,23个tRNA。对碱基含量分析发现T碱基含量最高为32.34%, C碱基最低为14.99%,选择笠贝科13个物种的线粒体基因组进行选择压力分析发现所有PCGs都受到纯化选择。另外通过结合腹足纲下6个亚纲的线粒体基因组的13个PCGs构建了系统发育树,发现笠贝科为单系群,与帽贝科Patellidae具有较近的亲缘关系。对笠形腹足亚纲的线粒体基因重排进行比较发现笠贝科在笠形腹足亚纲中表现出最广泛的不规律的重排。从重建的笠形腹足亚纲的分歧时间的年代图谱,得到笠贝的分化最早发生在中生代侏罗纪时期,在新生代物种大量分化。研究结果有助于理解不同笠贝物种的亲缘关系,以及腹足纲内各亚纲之间的进化地位与关系。  相似文献   

2.
The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute separate species. Our study provides a solid basis for further systematic investigations of this enigmatic insect group.  相似文献   

3.
The 5S rRNA gene family organization among 87 species and varieties of Pythium was investigated to assess evolutionary stability of the two patterns detected and to determine which pattern is likely the ancestral state in the genus. Species with filamentous sporangia (Groups A-C according to the ITS phylogenetic tree for Pythium) had 5S genes linked to the rDNA repeat that were predominantly coded for on the DNA strand opposite to the one with the other rRNA genes (‘inverted’ orientation). A small group of species with contiguous sporangia (Group D) is related to Groups A-C but had unlinked 5S genes. The main group of species with spherical zoosporangia (Groups E-J) generally had unlinked 5S genes in tandem arrays. The six species in Group K, although they also have spherical sporangia, had linked genes on the same strand as the other rRNA genes ‘non-inverted’ and most of them had pairs of tandem 5S genes. The evolutionary stability of 5S sequence organization was compared with the stability of morphological characters as interpreted from a phylogeny based on ITS sequence analysis. Features of 5S sequence organization were found to be just as consistent within groups as were the morphological characters. To determine the ancestral type of 5S family organization, a survey of Phytophthora strains was conducted to supply an outgroup reference. The most parsimonious interpretation of the data in this survey yielded the tentative conclusion that the linked condition of the 5S sequences was ancestral.  相似文献   

4.
Abstract. The phylogenetic relationships among the “archaeogastropod” clades Patellogastropoda, Vetigastropoda, Neritimorpha, and Neomphalina are uncertain; the phylogenetic placement of these clades varies across different analyses, and particularly among those using morphological characteristics and those relying on molecular data. This study explores the relationships among these groups using a combined analysis with seven molecular loci (18S rRNA, 28S rRNA, histone H3, 16S rRNA, cytochrome c oxidase subunit I [COI], myosin heavy-chain type II, and elongation factor-1α [EF-1α]) sequenced for 31 ingroup taxa and eight outgroup taxa. The deep evolutionary splits among these groups have made resolution of stable relationships difficult, and so EF-1α and myosin are used in an attempt to re-examine these ancient radiation events. Three phylogenetic analyses were performed utilizing all seven genes: a single-step direct optimization analysis using parsimony, and two-step approaches using parsimony and maximum likelihood. A single-step direct optimization parsimony analysis was also performed using only five molecular loci (18S rRNA, 28S rRNA, histone H3, 16S rRNA, and COI) in order to determine the utility of EF-1α and myosin in resolving deep relationships. In the likelihood and POY optimal phylogenetic analyses, Gastropoda, Caenogastropoda, Neritimorpha, Neomphalina, and Patellogastropoda were monophyletic. Additionally, Neomphalina and Pleurotomariidae fell outside the remaining vetigastropods, indicating the need for further investigation into the relationship of these groups with other gastropods.  相似文献   

5.
The geographical distribution of the limpet family Patellidae is essentially antitropical, with 18 species in southern Africa, 10 in the northeastern Atlantic, and only 11 species elsewhere (although 4 of these do occur in the tropics). One possible explanation for this distribution is the suggestion of a recent, perhaps Early Pliocene, migration from southern Africa northward. We tested this hypothesis by constructing a molecular phylogeny, derived from partial sequences of the 12S and 16S mitochondrial genes, obtained from 34 of the 38 patellid species. Five species of Nacellidae and 3 of Lottiidae were included as potential outgroups. Analysis revealed that two patellid clades are represented in the northeastern Atlantic. The typical European patellids (Patella sensu stricto) form a single clade within which there is little molecular divergence, but are distant from all other patellids, thus refuting the idea of recent southern ancestry. From the limited fossil record and estimated rates of molecular divergence, we suggest that Patella s.s. may have originated at least as early as the Upper Cretaceous and that its northern distribution may have been achieved at the same time. The second patellid clade present in the northeastern Atlantic is the genus Cymbula, of which the single species Cymbula safiana extends from West Africa to the Mediterranean. In contrast to Patella s.s., C. safiana is indeed a member of an otherwise southern African clade and may have attained its present distribution more recently, during the Miocene. The geographical origin of the family remains unclear, but a Mesozoic radiation in southern Gondwana is possible. By optimizing morphological characters on our molecular tree, we consider the evolution of shell mineralogy and sperm ultrastructure. We also discuss the phylogenetic classification of the patellids and present some evidence that the family may not be monophyletic.  相似文献   

6.
Phylogenetic Ecology of the Freshwater Actinobacteria acI Lineage   总被引:1,自引:0,他引:1       下载免费PDF全文
The acI lineage of freshwater Actinobacteria is a cosmopolitan and often numerically dominant member of lake bacterial communities. We conducted a survey of acI 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions from 18 Wisconsin lakes and used standard nonphylogenetic and phylogenetic statistical approaches to investigate the factors that determine acI community composition at the local scale (within lakes) and at the regional scale (across lakes). Phylogenetic reconstruction of 434 acI 16S rRNA genes revealed a well-defined and highly resolved phylogeny. Eleven previously unrecognized monophyletic clades, each with ≥97.9% within-clade 16S rRNA gene sequence identity, were identified. Clade community similarity positively correlated with lake environmental similarity but not with geographic distance, implying that the lakes represent a single biotic region containing environmental filters for communities that have similar compositions. Phylogenetically disparate clades within the acI lineage were most abundant at the regional scale, and local communities were comprised of more closely related clades. Lake pH was a strong predictor of the community composition, but only when lakes with a pH below 6 were included in the data set. In the remaining lakes (pH above 6) biogeographic patterns in the landscape were instead a predictor of the observed acI community structure. The nonrandom distribution of the newly defined acI clades suggests potential ecophysiological differences between the clades, with acI clades AI, BII, and BIII preferring acidic lakes and acI clades AII, AVI, and BI preferring more alkaline lakes.  相似文献   

7.
Phylogenetic ecology of the freshwater Actinobacteria acI lineage   总被引:1,自引:0,他引:1  
The acI lineage of freshwater Actinobacteria is a cosmopolitan and often numerically dominant member of lake bacterial communities. We conducted a survey of acI 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions from 18 Wisconsin lakes and used standard nonphylogenetic and phylogenetic statistical approaches to investigate the factors that determine acI community composition at the local scale (within lakes) and at the regional scale (across lakes). Phylogenetic reconstruction of 434 acI 16S rRNA genes revealed a well-defined and highly resolved phylogeny. Eleven previously unrecognized monophyletic clades, each with > or =97.9% within-clade 16S rRNA gene sequence identity, were identified. Clade community similarity positively correlated with lake environmental similarity but not with geographic distance, implying that the lakes represent a single biotic region containing environmental filters for communities that have similar compositions. Phylogenetically disparate clades within the acI lineage were most abundant at the regional scale, and local communities were comprised of more closely related clades. Lake pH was a strong predictor of the community composition, but only when lakes with a pH below 6 were included in the data set. In the remaining lakes (pH above 6) biogeographic patterns in the landscape were instead a predictor of the observed acI community structure. The nonrandom distribution of the newly defined acI clades suggests potential ecophysiological differences between the clades, with acI clades AI, BII, and BIII preferring acidic lakes and acI clades AII, AVI, and BI preferring more alkaline lakes.  相似文献   

8.
Erwin PM  Thacker RW 《Molecular ecology》2008,17(12):2937-2947
Cyanobacteria are common members of sponge-associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum , molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.  相似文献   

9.
Scleractinian corals have long been assumed to be a monophyletic group characterized by the possession of an aragonite skeleton. Analyses of skeletal morphology and molecular data have shown conflicting patterns of suborder and family relationships of scleractinian corals, because molecular data suggest that the scleractinian skeleton could have evolved as many as four times. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 12S ribosomal RNA gene from 28 species of scleractinian corals and use this gene to infer the evolutionary history of scleractinians. We show that the sequences obtained fall into two distinct clades, defined by PCR product length. Base composition among taxa did not differ significantly when the two clades were considered separately or as a single group. Overall, transition substitutions accumulated more quickly relative to transversion substitutions within both clades. Spatial patterns of substitutions along the 12S rRNA gene and likelihood ratio tests of divergence rates both indicate that the 12S rRNA gene of each clade evolved under different constraints. Phylogenetic analyses using mt 12S rRNA gene data do not support the current view of scleractinian phylogeny based upon skeletal morphology and fossil records. Rather, the two-clade hypothesis derived from the mt 16S ribosomal gene is supported.  相似文献   

10.
The species richness and endemism of New Caledonia are traditionally held to result from the main island's Gondwanan origin and progressive diversification subsequent to extended isolation. Recent studies have challenged this hypothesis, promoting a scenario of recent origins and diversifications of New Caledonian arthropod groups. In the present study, the phylogeny of the endemic harvestman family Troglosironidae (Opiliones: Cyphophthalmi) is investigated using DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and two mitochondrial genes (the protein-coding cytochrome c oxidase subunit I and the ribosomal 16S rRNA). Phylogenetic analyses support the monophyly of Troglosironidae and a scenario of an ancient (> 200 Ma) origin of the family, with subsequent diversification of extant lineages in the Eocene. These results corroborate the relictual nature of taxa among New Caledonia's biota while being consistent with diversification in accordance with geological events in the Eocene.  相似文献   

11.
Although Ensifera is a major insect model group, its phylogenetic relationships have been understudied so far. Few phylogenetic hypotheses have been proposed, either with morphological or molecular data. The largest dataset ever used for phylogeny reconstruction on this group is molecular (16S rRNA, 18S rRNA and 28S rRNA sequences for 51 ensiferan species), which has been used twice with different resultant topologies. However, only one of these hypotheses has been adopted commonly as a reference classification. Here we re‐analyse this molecular dataset with different methods and parameters to test the robustness and the stability of the adopted phylogeny. Our study reveals the instability of phylogenetic relationships derived from this dataset, especially for the deepest nodes of the group, and suggests some guidelines for future studies. The comparison between the different classifications proposed in the past 70 years for Ensifera and our results allows the identification of potential monophyletic clades (katydids, mole crickets, scaly crickets + Malgasia, true crickets, leaf roller crickets, cave crickets) and the remaining unresolved clades (wetas, Jerusalem crickets and most of the highest rank clades) in Ensifera phylogeny.  相似文献   

12.
Abstract.— The American seven-spined gobies (Gobiidae, Gobiosomatini) are highly diverse both in morphology and ecology with many endemics in the Caribbean region. We have reconstructed a molecular phylogeny of 54 Gobio-somatini taxa (65 individuals) based on a 1646-bp region that includes the mitochondrial 12S rRNA, tRNA-Val, and 16S rRNA genes. Our results support the monophyly of the seven-spined gobies and are in agreement with the existence of two major groups within the tribe, the Gobiosoma group and the Microgobius group. However, they reject the monophyly of some of the Gobiosomatini genera. We use the molecular phylogeny to study the dynamics of speciation in the Gobiosomatini by testing for departures from the constant speciation rate model. We observe a burst of speciation in the early evolutionary history of the group and a subsequent slowdown. Our results show a split among clades into coastal-estuarian, deep ocean, and tropical reef habitats. Major habitat shifts account for the early significant acceleration in lineage splitting and speciation rate and the initial divergence of the main Gobiosomatini clades. We found that subsequent diversification is triggered by behavior and niche specializations at least in the reef-associated clades. Overall, our results confirm that the diversity of Gobiosomatini has arisen during episodes of adaptive radiation, and emphasize the importance of ecology in marine speciation.  相似文献   

13.
Understanding the relationship between prokaryotic traits and phylogeny is important for predicting and modeling ecological processes. Microbial extracellular enzymes have a pivotal role in nutrient cycling and the decomposition of organic matter, yet little is known about the phylogenetic distribution of genes encoding these enzymes. In this study, we analyzed 3058 annotated prokaryotic genomes to determine which taxa have the genetic potential to produce alkaline phosphatase, chitinase and β-N-acetyl-glucosaminidase enzymes. We then evaluated the relationship between the genetic potential for enzyme production and 16S rRNA phylogeny using the consenTRAIT algorithm, which calculated the phylogenetic depth and corresponding 16S rRNA sequence identity of clades of potential enzyme producers. Nearly half (49.2%) of the genomes analyzed were found to be capable of extracellular enzyme production, and these were non-randomly distributed across most prokaryotic phyla. On average, clades of potential enzyme-producing organisms had a maximum phylogenetic depth of 0.008004–0.009780, though individual clades varied broadly in both size and depth. These values correspond to a minimum 16S rRNA sequence identity of 98.04–98.40%. The distribution pattern we found is an indication of microdiversity, the occurrence of ecologically or physiologically distinct populations within phylogenetically related groups. Additionally, we found positive correlations among the genes encoding different extracellular enzymes. Our results suggest that the capacity to produce extracellular enzymes varies at relatively fine-scale phylogenetic resolution. This variation is consistent with other traits that require a small number of genes and provides insight into the relationship between taxonomy and traits that may be useful for predicting ecological function.  相似文献   

14.
The Notothenioidei dominates the fish fauna of the Antarctic in both biomass and diversity. This clade exhibits adaptations related to metabolic function and freezing avoidance in the subzero Antarctic waters, and is characterized by a high degree of morphological and ecological diversity. Investigating the macroevolutionary processes that may have contributed to the radiation of notothenioid fishes requires a well-resolved phylogenetic hypothesis. To date published molecular and morphological hypotheses of notothenioids are largely congruent, however, there are some areas of significant disagreement regarding higher-level relationships. Also, there are critical areas of the notothenioid phylogeny that are unresolved in both molecular and morphological phylogenetic analyses. Previous molecular phylogenetic analyses of notothenioids using partial mtDNA 12S and 16S rRNA sequence data have resulted in limited phylogenetic resolution and relatively low node support. One particularly controversial result from these analyses is the paraphyly of the Nototheniidae, the most diverse family in the Notothenioidei. It is unclear if the phylogenetic results from the 12S and 16S partial gene sequence dataset are due to limited character sampling, or if they reflect patterns of evolutionary diversification in notothenioids. We sequenced the complete mtDNA 16S rRNA gene for 43 notothenioid species, the largest sampling to-date from all eight taxonomically recognized families. Phylogenetic analyses using both maximum parsimony and maximum likelihood resulted in well-resolved trees with most nodes supported with high bootstrap pseudoreplicate scores and significant Bayesian posterior probabilities. In all analyses the Nototheniidae was monophyletic. Shimodaira–Hasegawa tests were able to reject two hypotheses that resulted from prior morphological analyses. However, despite substantial resolution and node support in the 16S rRNA trees, several phylogenetic hypotheses among closely related species and clades were not rejected. The inability to reject particular hypotheses among species in apical clades is likely due to the lower rate of nucleotide substitution in mtDNA rRNA genes relative to protein coding regions. Nevertheless, with the most extensive notothenioid taxon sampling to date, and the much greater phylogenetic resolution offered by the complete 16S rRNA sequences over the commonly used partial 12S and 16S gene dataset, it would be advantageous for future molecular investigations of notothenioid phylogenetics to utilize at the minimum the complete gene 16S rRNA dataset.  相似文献   

15.
Sequence data derived from three mitochondrial markers (cytochrome b, 16S rRNA and 12S rRNA genes) were used to infer the evolutionary history of several insular and mainland populations of the Greek legless skink (Ophiomorus punctatissimus), covering most of its distributional range. All phylogenetic analyses produced topologically identical trees that revealed a well-resolved phylogeny. These trees support two O. punctatissimus clades, which are geographically separated (west and east of the mid-Aegean trench). The assumption of a clock-like evolution could not be rejected, and thus a local clock was calibrated for the O. punctatissimus lineages. The non-overlapping geographic distributions of the major clades suggest a spatial and temporal sequence of diversification that coincides with paleogeographic separations during the geological history of the Aegean region. It seems that O. punctatissimus is an old eastern Mediterranean species that has been differentiating in this region at least from middle Miocene. It is possible that the ancestral form of O. punctatissimus invaded the Aegean region from Anatolia before the complete formation of the mid-Aegean trench, when the Aegean was still a uniform landmass, while other vicariant events have led to its present distribution.  相似文献   

16.
Phylogenetic relationships among 11 species of sepiids from Japanese waters and Sepia officinalis from Mediterranean were studied using partial sequences of the mitochondrial 12S rRNA, 16S rRNA, and cytochrome c oxidase subunit I genes. These three genes had been analyzed in an Atlantic species S. elagans and was obtained from database. In the two-gene set analysis (16S+COI), sequence data of another 4 species were added from database. We also studied morphological characters of radulae, tentacular clubs, and cuttlebones. The molecular phylogeny was not congruent with relationships detected by the number of rows in radulae and the arrangement of suckers on the tentacular club. As to the cuttlebone shape, the molecular phylogeny suggests the separation of two groups, Doratosepion species with a lanceolate cuttlebone and the others with a broad cuttlebone. Our molecular phylogenetic study revealed these sepiids are separated into four clades. The first clade includes Sepia officinalis, S. hierrendda, S. bertheloti, S. pharaonis and Sepiella japonica. The second clade consists of S. latimanus and Metasepia tullbergi from sub-tropical waters. The third clade includes Sepia esculenta, S. madokai, S. aculeata and S. lycidas, which have a cuttlebone with a prominent spine. The fourth clade consists of Doratosepion species complex, S. kobiensis, S. lorigera, S. pardex, S. peterseni, and S. sp., which are characterized by a narrow cuttlebone with a distinct outer cone at the posterior end. The lack of membranous structures in the cuttlebone is a synapomorphy for this clade. S. elegans did not clearly belong to any of these clades and might represent the fifth clade.  相似文献   

17.
Although tortoises of the family Testudinidae represent a familiar and widely distributed group of turtles, their phylogenetic relationships have remained contentious. In this study, we included 32 testudinid species (all genera and subgenera, and all species of Geochelone, representing 65% of the total familial species diversity), and both mitochondrial (12S rRNA, 16S rRNA, and cytb) and nuclear (Cmos and Rag2) DNA data with a total of 3387 aligned characters. Using diverse phylogenetic methods (Maximum Parsimony, Maximum Likelihood, and Bayesian Analysis) congruent support is found for a well-resolved phylogeny. The most basal testudinid lineage includes a novel sister relationship between Asian Manouria and North American Gopherus. In addition, this phylogeny supports two other major testudinid clades: Indotestudo+Malacochersus+Testudo; and a diverse clade including Pyxis, Aldabrachelys, Homopus, Chersina, Psammobates, Kinixys, and Geochelone. However, we find Geochelone rampantly polyphyletic, with species distributed in at least four independent clades. Biogeographic analysis based on this phylogeny is consistent with an Asian origin for the family (as supported by the fossil record), but rejects the long-standing hypothesis of South American tortoises originating in North America. By contrast, and of special significance, our results support Africa as the ancestral continental area for all testudinids except Manouria and Gopherus. Based on our systematic findings, we also propose modifications concerning Testudinidae taxonomy.  相似文献   

18.
Despite their medical interest, the phylogeny of the snake family Viperidae remains inadequately understood. Previous studies have generally focused either on the pitvipers (Crotalinae) or on the Old World vipers (Viperinae), but there has been no comprehensive molecular study of the Viperidae as a whole, leaving the affinities of key taxa unresolved. Here, we infer the phylogenetic relationships among the extant genera of the Viperidae from the sequences of four mitochondrial genes (cytochrome b, NADH subunit 4, 16S and 12S rRNA). The results confirm Azemiops as the sister group of the Crotalinae, whereas Causus is nested within the Viperinae, and thus not a basal viperid or viperine. Relationships among the major clades of Viperinae remain poorly resolved despite increased sequence information compared to previous studies. Bayesian molecular dating in conjunction with dispersal-vicariance analysis suggests an early Tertiary origin in Asia for the crown group Viperidae, and rejects suggestions of a relatively recent, early to mid-Tertiary origin of the Caenophidia.  相似文献   

19.
To clarify the genetic divergence in the F. limnocharis complex from Thailand and neighboring countries and to elucidate the phylogenetic problems of this taxon, we analyzed partial sequences of the mitochondrial 12S and 16S rRNA genes and the nuclear CXCR4, NCX1, RAG-1, and tyrosinase genes. The F. limnocharis complex from Thailand had three distinct haplotypes for 12S and 16S rRNA genes. Nucleotide similarities and the phylogenetic relationships indicated that the haplotype 1 group corresponded to the real "F. limnocharis", the haplotype 2 group was F. orissaensis or closely related to it, and the haplotype 3 group was possibly an undescribed species. Mitochondrial gene data also showed two major clades of the genus Fejervarya, the Southeastern and South Asian groups. Although F. orissaensis is so far known only from Orissa in India, the haplotype 2 group was observed in Thailand. This distribution pattern and the phylogeny suggested that the origin of F. orissaensis and the haplotype 2 group might lie in Southeast Asia. There was also evidence suggesting that the haplotype 3 group originated in the South Asian area and has spread to northern Thailand. The nuclear gene data did not support the monophyly of the haplotypes recognized by mitochondrial genes. This incongruence between the mitochondrial and nuclear data seems to be caused by ancestral polymorphic sites contained in nuclear genes. Although neither the mitochondrial nor the nuclear data clarified intergeneric relationships, the nuclear data rejected the monophyly of the genus Fejervarya.  相似文献   

20.
The family Gigasporaceae consisted of the two genera Gigaspora and Scutellospora when first erected. In a recent revision of this classification, Scutellospora was divided into three families and four genera based on two main lines of evidence: (1) phylogenetic patterns of coevolving small and large rRNA genes and (2) morphology of spore germination shields. The rRNA trees were assumed to accurately reflect species evolution, and shield characters were selected because they correlated with gene trees. These characters then were used selectively to support gene trees and validate the classification. To test this new classification, a phylogenetic tree was reconstructed from concatenated 25S rRNA and β-tubulin gene sequences using 35% of known species in Gigasporaceae. A tree also was reconstructed from 23 morphological characters represented in 71% of known species. Results from both datasets showed that the revised classification was untenable. The classification also failed to accurately represent sister group relationships amongst higher taxa. Only two clades were fully resolved and congruent among datasets: Gigaspora and Racocetra (a clade consisting of species with spores having one inner germinal wall). Other clades were unresolved, which was attributed in part to undersampling of species. Topology of the morphology-based phylogeny was incongruent with gene evolution. Five shield characters were reduced to three, of which two were phylogenetically uninformative because they were homoplastic. Therefore, most taxa erected in the new classification are rejected. The classification is revised to restore the family Gigasporaceae, within which are the three genera Gigaspora, Racocetra, and Scutellospora. This classification does not reflect strict topology of either gene or morphological evolution. Further revisions must await sampling of additional characters and taxa to better ascertain congruence between datasets and infer a more accurate phylogeny of this important group of fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号