首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal precursor cells give rise to six types of neurons and one type of glial cell during development, and this process is controlled by multiple basic helix-loop-helix (bHLH) genes. However, the precise mechanism for specification of retinal neuronal subtypes, particularly horizontal neurons and photoreceptors, remains to be determined. Here, we examined retinas with three different combinations of triple bHLH gene mutations. In retinas lacking the bHLH genes Ngn2, Math3, and NeuroD, horizontal neurons as well as other neurons such as bipolar cells were severely decreased in number. In the retina lacking the bHLH genes Mash1, Ngn2, and Math3, horizontal and other neurons were severely decreased, whereas ganglion cells were increased. In the retina lacking the bHLH genes Mash1, Math3, and NeuroD, photoreceptors were severely decreased, whereas ganglion cells were increased. In all cases, glial cells were increased. The increase and decrease of these cells were the result of cell fate changes and cell death and seem to be partly attributable to the remaining bHLH gene expression, which also changes because of triple bHLH gene mutations. These results indicate that multiple bHLH genes cross-regulate each other, cooperatively specify neuronal subtypes, and regulate neuronal survival in the developing retina.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Roles of homeobox and bHLH genes in specification of a retinal cell type   总被引:7,自引:0,他引:7  
Previous analysis of mutant mice has revealed that the bHLH genes Mash1 and Math3, and the homeobox gene Chx10 are essential for generation of bipolar cells, the interneurons present in the inner nuclear layer of the retina. Thus, a combination of the bHLH and homeobox genes should be important for bipolar cell genesis, but the exact functions of each gene remain largely unknown. We have found that in Mash1-Math3 double-mutant retina, which exhibits a complete loss of bipolar cells, Chx10 expression did not disappear but remained in Müller glial cells, suggesting that Chx10 expression per se is compatible with gliogenesis. In agreement with this, misexpression of Chx10 alone with retrovirus in the retinal explant cultures induced generation of the inner nuclear layer cells, including Müller glia, but few of them were mature bipolar cells. Misexpression of Mash1 or Math3 alone did not promote bipolar cell genesis either, but inhibited Müller gliogenesis. In contrast, misexpression of Mash1 or Math3 together with Chx10 increased the population of mature bipolar cells and decreased that of Müller glia. Thus, the homeobox gene provides the inner nuclear layer-specific identity while the bHLH genes regulate the neuronal versus glial fate determination, and these two classes of genes together specify the bipolar cell fate. Moreover, Mash1 and Math3 promoted the bipolar cell fate, but not the other inner nuclear layer-specific neuronal subtypes in the presence of Chx10, raising the possibility that the bHLH genes may be involved in neuronal subtype specification, in addition to simply making the neuronal versus glial fate choice.  相似文献   

10.
11.
12.
13.
bHLH Transcription factors and mammalian neuronal differentiation   总被引:10,自引:0,他引:10  
The basic helix-loop-helix (bHLH) factor Mashl is expressed in the developing nervous system. Null mutation of Mash1 results in loss of olfactory and autonomic neurons and delays differentiation of retinal neurons, indicating that Mash1 promotes neuronal differentiation. Other bHLH genes, Math/NeuroD/Neurogenin, all expressed in the developing nervous system, have also been suggested to promote neuronal differentiation. In contrast, another bHLH factor, HES1, which is expressed by neural precursor cells but not by neurons, represses Mash1 expression and antagonizes Mash1 activity in a dominant negative manner. Forced expression of HES1 in precursor cells blocks neuronal differentiation in the brain and retina, indicating that HES1 is a negative regulator of neuronal differentiation. Conversely, null mutation of HES1 up-regulates Mash1 expression, accelerates neuronal differentiation, and causes severe defects of the brain and eyes. Thus, HES1 regulates brain and eye morphogenesis by inhibiting premature neuronal differentiation, and the down-regulation of HES1 expression at the right time is required for normal development of the nervous system. Interestingly, HES1 can repress its own expression by binding to its promoter, suggesting that negative autoregulation may contribute to down-regulation of HES1 expression during neural development. Recent studies indicate that HES1 expression is also controlled by RBP-J, a mammalian homologue of Suppressor of Hairless [Su(H)], and Notch, a key membrane protein that may regulate lateral specification through RBP-J during neural development. Thus, the Notch → RBP-J → HES1 ÷ Mash1 pathway may play a critical role in neuronal differentiation.  相似文献   

14.
15.
16.
Once neurons enter the post‐mitotic G0 phase during central nervous system (CNS) development, they lose their proliferative potential. When neurons re‐enter the cell cycle during pathological situations such as neurodegeneration, they undergo cell death after S phase progression. Thus, the regulatory networks that drive cell proliferation and maintain neuronal differentiation are highly coordinated. In this review, the coordination of cell cycle control and neuronal differentiation during development are discussed, focusing on regulation by the Rb family of tumor suppressors (including p107 and p130), and the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitors. Based on recent findings suggesting roles for these families in regulating neurogenesis and neuronal differentiation, I propose that the Rb family is essential for daughter cells of neuronal progenitors to enter the post‐mitotic G0 phase without affecting the initiation of neuronal differentiation in most cases, while the Cip/Kip family regulates the timing of neuronal progenitor cell cycle exit and the initiation of neuronal differentiation at least in the progenitor cells of the cerebral cortex and the retina. Rb's lack of involvement in regulating the initiation of neuronal differentiation may explain why Rb family‐deficient retinoblastomas characteristically exhibit neuronal features.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号