首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In theory, carbon is highly mobile in aquatic systems. Recent evidence from carbon stable isotopes of crabs (Parasesarma erythrodactyla and Australoplax tridentata), however, shows that in subtropical Australian waters, measurable carbon movement between adjacent mangrove and saltmarsh habitats is limited to no more than a few metres. We tested whether the pattern in crab δ13C values across mangrove and saltmarsh habitats was explained by crab movement, or the movement of particulate organic matter. We estimated crab movement in a mark–recapture program using an array of pitfall traps on 13 transects (a total of 65 traps) covering an area of 600 m2 across the interface of these two habitats. Over a 19-day period, the majority of crabs (91% for P. erythrodactyla, 93% for A. tridentata) moved <2 m from the place of initial capture. Crab movement cannot, therefore, explain the patterns in δ13C values of crabs. δ13C values of detritus collected at 2-m intervals across the same habitat interface fitted a sigmoidal curve of a similar form to that fitting the δ13C values of crabs. δ13C values of detritus were 2–4‰ more depleted in saltmarsh (−18.5±0.6‰), and 4–7‰ more depleted in mangroves (−25.9±0.1‰) than δ13C values of crabs recorded previously in each habitat. Assimilation by crabs of very small detrital fragments or microphytobenthos, more enriched in 13C, may explain the disparity in δ13C values. Nevertheless, the pattern in δ13C values of detritus suggests that crabs obtain their carbon from up to several metres away, but without themselves foraging more then a metre or so from their burrow. Such detailed measurements of carbon movement in estuaries provide a spatially explicit understanding of the functioning of food webs in saltmarsh and mangrove habitats.  相似文献   

2.
Lake Taihu is a large, shallow, and eutrophic lake in China. It has provided local communities with valuable fisheries for centuries, but little is known of the trophodynamics, or of its faunal communities. Carbon and nitrogen isotopic composition was used to assess its trophic pathways and the food web structure [food sources and trophic levels (TL)]. Basal food sources were distinguishable based on their δ13C values, ranging from −27.2 to −15.2‰. Consumers were also well separated in δ13C (−26.9 to −17.9‰ for invertebrates and −25.7 to −18.1‰ for fishes), which allowed for an effective discrimination of carbon sources between these fauna. An average trophic enrichment factor of 3.4‰ was used to calculate the TLs based on δ15N of zooplankton, with results indicating a food web having four TLs. Although δ15N values overlap and cover a large range within trophic compartments, the isotopic signatures of the species assessed revealed a general trend of 15N enrichment with increasing TL. Stable isotope signatures were also used to establish a general food web scheme in which five main trophic pathways were analyzed.  相似文献   

3.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Over the last decade, the non-native, filter-feeding crab Petrolisthes armatus invaded oyster reefs of the South Atlantic Bight at densities of thousands m−2. Mesocosm and field experiments demonstrated that P. armatus at ∼10–75% of mean summer densities: (1) suppressed growth of small oysters, biomass of benthic microalgae, and recruitment of native mud crabs, (2) enhanced oyster, mussel, and total bivalve recruitment, macroalgal cover, and survivorship of predatory oyster drills, but (3) did not affect native taxonomic richness. Laboratory feeding assays, field tethering experiments, and population changes in field and mesocosm experiments suggest that P. armatus is a preferred prey for native mud crabs and other consumers, thus relieving predation on native species and enhancing recruitment or survival of bivalves and oyster drills. In contrast, the invasive crab can consume crustacean larvae and via this feeding may suppress recruitment of native mud crabs. Our findings should be conservative given the low densities of P. armatus seeded into experimental plots and our inability to run longer-term experiments due to controls rapidly being colonized by non-native crabs recruiting from the plankton. Invasive crabs commonly impact native communities via predation, but community impacts of this invasive crab may be as much due to its role as a preferred prey of native consumers as to its predation on native prey. Given that oysters are foundation species for shallow reefs in the South Atlantic Bight, the long-term effects of this invasion could be considerable.  相似文献   

5.
Salt marshes and shallow-water macroalgal beds are known to provide nursery habitat for many species of fish and invertebrates. The role of these habitats as refuge from predation is well established, but the degree to which indigenous primary production within the nursery provides food for growth and development of estuarine species remains unresolved. In this study, we tested the hypothesis that juvenile blue crabs depend on indigenous primary production, directly or indirectly, during their entire stay within the nursery. To test this hypothesis, we conducted isotopic studies and stomach content analyses of juveniles from habitats near the mouth of Delaware Bay and from an adjacent lagoonal estuary (ca. 39.5° N, 75.1° W). Primary producers, marsh detritus, various life-history stages of blue crabs and potential prey species were sampled in the main estuary and in an adjacent marsh during the summer and early fall of two consecutive years. Newly settled juveniles (<15 mm carapace width) from the marsh were about 1.8‰ lighter in carbon (−17.2‰) relative to larger juveniles from the marsh (15–30 mm carapace width) and appeared to have retained a carbon isotopic signature indicative of the phytoplankton-based food web associated with larval stages. However, the signature of juveniles changed as a function of size. Large juveniles and crabs >60 mm were enriched in δ13C (−14.7 ± 0.1‰) compared to small crabs, suggesting a gradual shift in diet from a planktonic to a detritus-based food web with increasing size. As with crabs from Delaware Bay, the δ13C signature of juvenile crabs sampled from macroalgal beds in the lagoonal estuary (Rehoboth Bay) changed as a function of size. Also, δ13C ratios of crabs varied among the various species of macroalgae. The δ15N composition of primary producers in the marsh and main estuary also was reflected in the δ15N values of crabs and other benthic consumers in the respective habitats. Results of stomach-content analysis in this study were consistent with isotope data. Observed changes in prey preferences were related to changes in size of juvenile crabs and also differed among habitats. Gut content analyses of the three size classes of juveniles in macroalgal beds from Rehoboth Bay indicated that the crabs depend heavily on various amphipod species that occur on the seaweeds. These amphipods graze directly on the macroalgae and are among the most abundant invertebrates in the macroalgal beds. This implies a direct trophic relationship between the juvenile crabs and the macroalgae. In summary, our study provides strong evidence that the value of nursery areas such as salt marshes and macroalgal beds goes beyond that of providing refuge from predation, and that species using these nurseries (e.g. juvenile blue crabs) are ultimately dependent on primary production originating in benthic plants indigenous to the nursery.  相似文献   

6.
Geomorphology, vegetation and tidal fluxes are usually identified as the factors introducing variation in the flushing of particulate organic matter (POM) from tidal marshes to adjacent waters. Such variables may, however, be insufficient to explain export characteristics in marshes inhabited by ecosystem engineers that can alter the quantity and quality of POM on the marsh surface that is subject to tidal flushing. In this study we evaluated the balance between transfer of buried sedimentary organic carbon (C) to the marsh surface due to crab excavation (measured from the mounds of sediment excavated from burrows) and outputs of C from the surface due to sediment deposition within crab burrows (estimated from sediment deposited within PVC burrow mimics), in a Southwestern Atlantic salt marsh supporting dense (approximately 70 ind m−2) populations of the crab Chasmagnathus granulatus. C excavation by crabs was much greater than deposition of C within crab burrow mimics. Per area unit estimates of the balance between these two processes indicated that crabs excavated 5.98 g m−2 d−1 and 4.80 mg m−2 d−1 of total and readily (10 d) labile C, respectively. However, sediments excavated by crabs showed a significantly lower content of both total and readily-labile C than sediment collected in burrow mimics. This indicates that ecosystem engineering by burrowing crabs causes a net decrease in the concentration of C in the superficial sediment layers and, thus, an overall decrease in the amount of C that can be washed out of the marsh by tidal action. Incorporating the in situ activities of ecosystem engineers in models of marsh export should enhance understanding of the function of marshes in estuarine ecosystems.  相似文献   

7.
Compound-specific stable isotope analysis (CSIA) of amino acids is a new method that enables estimates of trophic position for consumers in food webs. We examined the nitrogen isotopic composition (δ15N) of amino acids of Japanese social insects (three bee, three wasp, and four hornet species) to evaluate the potential of CSIA of amino acids in studies of terrestrial food webs. For wasps, we also examined samples at different growth stages (ranging from egg to adult) to assess the effect of metamorphosis on CSIA estimates of trophic position. The δ15N values of bulk tissues for Japanese social insects are only weakly correlated with the biologically expected trophic positions. In contrast, the trophic positions estimated from the δ15N values of amino acids (yielding values of between 2.0 and 2.3 for bees, between 2.8 and 3.3 for wasps, and between 3.5 and 4.1 for hornets) are consistent with the biologically expected trophic positions for these insects (i.e., 2.0 for bees, 3.0 for wasps, and 3.0–4.0 for hornets). Although large variability is observed among the δ15N values of individual amino acids (e.g., ranging from 3.0 to 14.9‰ for phenylalanine), no significant change is observed in the trophic position during wasp metamorphosis. Thus, the CSIA of amino acids is a powerful tool for investigating not only aquatic food webs but also terrestrial food webs with predatory insects.  相似文献   

8.
The composition, abundance, diet and trophic status of zooplankton, bottom invertebrates, fish and nekton were analyzed based on the data collected by the staff of the TINRO-Center during complex bottom trawl catches on the Bering Sea shelf in the fall of 2004. The stomach contents of mass fish species were analyzed and the nitrogen and carbon isotopic composition of 36 mass species of plankton, benthos, nekton and nektobenthos, which together make up the basis of pelagic and bottom communities, was determined. It was found that zooplankton noticeably differ from benthic invertebrates in carbon isotopic composition: δ13C values in zooplankton varied from −20.3‰ to −17.9‰; in benthos—from −17.5‰to −13.0‰; and in fish—from −19.2‰ (juvenile walleye pollock) to −15.3‰ (saffron cod). The levels of 13C isotope in the tissues of fish depended mostly on the share of pelagic or benthic animals in their diet. δ15N values in the studied species ranged from 8.6‰ (in sea urchins) to 17.2‰ (in large Pacific cods), which corresponds to a trophic level of 2.8. Obviously the δ15N values reflect the degree of predation and generally show the ratio of primary, secondary and tertiary consumers in a fish’s diet. Trophic interactions manifest a high degree of interdependence between benthic and pelagic communities (even without taking into account such lower components of the food web as phytoplankton, bacteria, and protozoa) occurring in most nektonic species that depend on both bottom and pelagic food.  相似文献   

9.

Invasive non-native crustaceans are a biodiversity and management concern in the Mediterranean Sea. The Atlantic blue crab (Callinectes sapidus) was first recorded in the Mediterranean Sea in 1949, but may have arrived as early as in the 1930’s. Blue crabs in the Mediterranean Sea are of concern due to their presumed potential for negative consumptive and competitive interactions with native fauna. The aim of this study was to provide a first assessment of the trophic ecology of non-native blue crab in the Northern Aegean Sea using stable carbon (δ13C) and nitrogen isotope (δ15N) analysis. We found limited isotopic niche overlap between blue crabs and seven native species examined at Gökçeada Island in April, June, and August of 2017. In addition, the range of calculated trophic positions of blue crabs at Gökçeada Island (2.0 to 4.4), while broad, is in general agreement with prior studies in both native and non-native ranges. We also observe that trophic position declined and the relative importance of pelagic carbon sources to blue crabs increased from April to August. However, we also found that differing assumptions as to the number and type of food web baselines and trophic discrimination factors led to differing estimates of trophic position in blue crabs at Gökçeada Island by as much as one to two trophic levels. These methodical differences make it challenging to directly compare results within and between studies, and thus limit our ability to assess negative consumptive and competitive interactions of invasive blue crab with native coastal species in the Mediterranean Sea.

  相似文献   

10.
Sipuncula is a relatively species poor and generally rarely investigated phylum; nonetheless, it may play a considerable role in the ecosystem. During this study sipunculan species distribution patterns in four fjords of west Spitsbergen (Kongsfjorden, Hornsund, Isfjorden and van Mijenfjorden) were examined. Material was collected during ten cruises undertaken from 1997 to 2006. A total of 381 samples were taken at 132 stations located in the four fjords and, a total number of 920 sipunculans specimens were found in 114 of those samples. The highest sipunculan species richness was observed in Hornsund (six species), followed by Kongsfjorden and Isfjorden (five species in each fjord). Sipunculan fauna in all fjords was strongly dominated by Golfingia vulgaris (80% of all sipunculan individuals in Kongsfjorden), and Golfingia margaritacea (84% in van Mijenfjorden and 40% in Hornsund) or Nephasoma diaphanes (54% in Isfjorden). Locally, sipunculans were found in high densities (max. 62 ind. 0.1 m−2 and up to 11% of macrobenthic densities) and biomass (max. 110.87 g 0.1 m−2 and up to 80% of total fauna biomass). At such sites, sipunculans may play an important role in bioturbation of sediments and as a food source for higher trophic levels. Sipunculans did not occur within close proximity of the glacier where they might be eliminated due to high sedimentation rate and low amounts of organic matter. Because of their importance in benthic systems, a need to include sipunculans in routine macrobenthic surveys is emphasized.  相似文献   

11.
Diverse populations of invertebrates constitute the food web in detritus layers of a forest floor. Heterogeneity in trophic interactions within such a species-rich community food web may affect the dynamic properties of biological communities such as stability. To examine the vertical heterogeneity in trophic interactions among invertebrates in litter and humus layers, we studied differences in species composition and variations in carbon and nitrogen stable-isotope ratios (δ13C and δ15N) using community-wide metrics of the forest floors of temperate broadleaf forests in Japan. The species composition differed between the two layers, and the invertebrates in the litter layer were generally larger than those in the humus layer, suggesting that these layers harbored separate food webs based on different basal resources. However, the δ13C of invertebrates, an indicator of differences in the basal resources of community food webs, did not provide evidence for separate food webs between layers even though plant-derived organic matter showed differences in stable-isotope ratios according to decomposition state. The minimum δ15N of invertebrates also did not differ between layers, suggesting sharing of food by detritivores from the two layers at lower trophic levels. The maximum and range of δ15N were greater in the humus layer, suggesting more trophic transfers (probably involving microorganisms) than in the litter layer and providing circumstantial evidence for weak trophic interactions between layers at higher trophic levels. Thus, the invertebrate community food web was not clearly compartmentalized between the detrital layers but still showed a conspicuous spatial (vertical) heterogeneity in trophic interactions.  相似文献   

12.
Oyster reefs are among the most threatened coastal habitat types, but still provide critical habitat and food resources for many estuarine species. The structure of oyster reef food webs is an important framework from which to examine the role of these reefs in supporting high densities of associated fishes. We identified major trophic pathways to two abundant consumers, gray snapper (Lutjanus griseus) and crested goby (Lophogobius cyprinoides), from a subtropical oyster reef using stomach content and stable isotope analysis. The diet of gray snapper was dominated by crabs, with shrimp and fishes also important. Juvenile gray snapper fed almost entirely on oyster reef-associated prey items, while subadults fed on both oyster reef- and mangrove-associated prey. Based on trophic guilds of the gray snapper prey, as well as relative δ13C values, microphytobenthos is the most likely basal resource pool supporting gray snapper production on oyster reefs. Crested goby had omnivorous diets dominated by bivalves, small crabs, detritus, and algae, and thus were able to take advantage of prey relying on production from sestonic, as well as microphytobenthos, source pools. In this way, crested goby represent a critical link of sestonic production to higher trophic levels. These results highlight major trophic pathways supporting secondary production in oyster reef habitat, thereby elucidating the feeding relationships that render oyster reef critical habitat for many ecologically and economically important fish species.  相似文献   

13.
The cardinal tetra (Paracheirodon axelrodi) is the most abundant species of the Brazilian ornamental fish trade, constituting more than 80% of the ornamental fish collected in the middle Negro River basin. Stable isotope analyses were used to identify the autotrophic carbon sources and trophic position for the cardinal in relation to the plant groups at the base of its foodchain. Filamentous algae, tree and plant leaves and cardinals were collected in stream habitats, flooded forest and interfluvial swamps (campos) during peak flood, falling water and low water periods. δ15N values of the cardinal in relation to the plants at the base of the food chain indicated a trophic position of omnivore. Values of δ13C for the plants ranged from −43.1 to −26.4‰, with averages of −37.6, −30.4, and −29.4‰ for filamentous algae, flooded forest leaves, and campo leaves, respectively. The δ13C values for the cardinal ranged from −35.0 to −27.9‰, with an average of −31.4‰. Relative contributions of plants to fish carbon were estimated in a two end-member mixing model which determined that the leaves (flooded forest and campo leaves combined) and filamentous algae had average relative contributions to cardinal carbon of 71% and 29%, respectively. However, seasonal variation in the relative contributions was encountered throughout the hydrological cycle. The cardinals least enriched in 13C were encountered in November during the falling water period, indicating that they had perhaps recently migrated down from interfluvial campos where filamentous algae production is significant. Considering that algal production has been reported to be less than 1% of total primary production in the Negro River, these results could suggest some evidence of selective herbivory in the cardinal’s food chain. Handling editor: J. M. Melack  相似文献   

14.
Stable isotope ratios of sulfur (34S/32S), carbon (13C/12C), and nitrogen (15N/14N) were analyzed in the soft tissues of 12 common species of fish from the near-shore waters of the Peter the Great Bay in the Sea of Japan. The average δ13C values of individual species varied from −20.7‰ for planktivorous fish to −16.8‰ for benthivorous fish, reflecting the growing relative contribution of benthic primary producers to fish nutrition. The majority of the various species representatives studied can be assigned to one trophic level, as indicated by their narrow range of δ15N values (9.9 to 12.6‰). Large interspecific variations were found in the sulfur stable isotope ratios of fish (the mean δ34S values ranged from 11.2 to 19.5‰). This is the result of the different contributions to fish nutrition of infaunal invertebrates that are depleted in 34S due to the microbial food chain of the bottom sediments.  相似文献   

15.
Stable carbon and nitrogen isotope ratios were used to elucidate primary carbon sources and trophic relationships of the fish and shrimp community in the Klong Ngao mangrove ecosystem, southern Thailand. There were no significant differences in isotopic compositions of biota between mangrove and offshore sites (Welch–Aspin test). The δ15N values of eight fish species and two shrimp species at both sites were also not significantly different by the test, meaning that at both sites they feed on the same diets due to the discharge of large quantities of mangrove sediments. The δ15N isotopic enrichment of consumers suggested that there are four trophic levels in the Klong Ngao food web, with at least two fish species capable of switching feeding strategies and thus altering their apparent trophic positions. Phytoplankton culture experiments indicated that mangrove-derived sediments could play an important role in stimulating phytoplankton growth for low turbidity offshore areas, thus providing an alternate food source. The isotopic associations among sources and consumers indicated that mangroves were the major carbon source supporting aquatic food webs in the Klong Ngao ecosystem.  相似文献   

16.
Lindquist ES  Carroll CR 《Oecologia》2004,141(4):661-671
Recently, the importance of seed predation by crabs on mangrove species distributions and densities has been established by several studies. In a tropical coastal terrestrial forest in Costa Rica, we investigated the relative importance of predation by land crabs, Gecarcinus quadratus, and hermit crabs, Coenobita compressus, on measured forest composition through a series of seed removal and seedling establishment experiments. We also used natural light-gaps and adjacent non-gap sites to test how canopy cover affects crab predation (seed removal) and seedling establishment. We found fewer tree species (S=18) and lower densities (seedlings, saplings, and adults) in the coastal zone within 100 m of coastline, than in the inland zone (S=59). Land crab densities were higher in the coastal zone (3.03±1.44 crabs m–2) than in the inland zone (0.76±0.78 crabs m–2), and hermit crabs were not present in the inland zone. Seed removal and seedling mortality also were higher in the coastal zone than in the inland zone, and in the open controls than in the crab exclosures. Mortality of seeds and seedlings was two to six times higher in the controls than exclosures for four of the five experiments. Crabs preferred seeds and younger seedlings over older seedlings but showed no species preferences in the seed (Anacardium excelsum, Enterolobium cyclocarpum, and Terminalia oblonga) and seedling (Pachira quinata and E. cyclocarpum) stages. We conclude that the observed differences in tree densities were caused by differential crab predation pressure along the coastal gradient, while the differences in species composition were due to predator escape (satiation) by seed quantity. Canopy cover did not affect seed removal rates, but did affect seedling survival with higher mortality in the non-gap versus gap environments. In summary, crab predation of seeds and seedlings, and secondarily canopy cover, are important factors affecting tree establishment in terrestrial coastal forests.  相似文献   

17.
Food web structure regulates the pathways and flow rates of energy, nutrients, and contaminants to top predators. Ecologically and physiologically meaningful biochemical tracers provide a means to characterize and quantify these transfers within food webs. In this study, changes in the ratios of stable N isotopes (e.g., δ15N), fatty acids (FA), and persistent contaminants were used to trace food web pathways utilized by herring gulls (Larus argentatus) breeding along the shores of the St Lawrence River, Canada. Egg δ15N values varied significantly among years and were used as an indicator of gull trophic position. Temporal trends in egg δ15N values were related to egg FA profiles. In years when egg δ15N values were greater, egg FA patterns reflected the consumption of more aquatic prey. Egg δ15N values were also correlated with annual estimates of prey fish abundance. These results indicated that temporal changes in aquatic prey availability were reflected in the gull diet (as inferred from ecological tracer profiles in gull eggs). Analysis of individual eggs within years confirmed that birds consuming more aquatic prey occupied higher trophic positions. Furthermore, increases in trophic position were associated with increased concentrations of most persistent organic contaminants in eggs. However, levels of highly brominated polybrominated diphenyl ether congeners, e.g, 2,2′,3,3′,4,4′,5,5′,6,6′-decabromoDE (BDE-209), showed a negative relationship with trophic position. These contrasting findings reflected differences among contaminant groups/homologs in terms of their predominant routes of transfer, i.e., aquatic versus terrestrial food webs. High trophic level omnivores, e.g., herring gulls, are common in food webs. By characterizing ecological tracer profiles in such species we can better understand spatial, temporal, and individual differences in pathways of contaminant, energy, and nutrient flow.  相似文献   

18.
Stable isotopes of carbon (δ13C) and nitrogen (δ15N) often have unique values among lake habitats (e.g. benthic, littoral, pelagic), providing a widely used tool for measuring the structure and energy flow in aquatic food webs. However, there has been little recognition of the spatial and temporal variabilities of these isotopes within habitats of aquatic ecosystems. To address this, δ13C and δ15N were measured in seston, zebra mussels (Dreissena polymorpha) and young-of-year (YOY) yellow (Perca flavescens), and white perch (Morone americana) collected from four sites across the offshore habitat of the western basin of Lake Erie during June–September 2009. Values of δ13C and δ15N showed significant spatial and temporal variations, with month accounting for >50% of the variation, for both stable isotopes and all the species except seston. Such variation in isotope values has the potential to significantly influence or confound interpretation of stable isotopes in measures, such as trophic position (TP) which use lower trophic level organisms as their baseline. For example, TP was found to vary up to 0.7 for yellow and white perch (TP = δ15Nfish − δ15Nzebra mussel/diet-tissue fractionation factor) depending on the zebra mussel data used (e.g., from a different location or a different collection month). As the use of stable isotopes continues to move from qualitative to more quantitative measures of trophic structure, food web research must recognize the importance of stable isotopes' variability in lower trophic level organisms, especially in large lake systems.  相似文献   

19.
A basic understanding of current food web dynamics and baseline data from which to measure future change is necessary to understand species re-distribution and altered competition for food with climate change. We use mercury (Hg) and carbon (δ13C) and nitrogen (δ15N) stable isotope ratios as biomarkers to understand species diet differences and age class differences among ringed (Phoca hispida), bearded (Erignathus barbatus), and harbour (P. vitulina) seals in a subarctic marine ecosystem. Adult bearded seals had significantly lower δ15N and muscle Hg than bearded seal pups, whereas the opposite was observed in ringed seals where pups had lower δ15N than adults, suggesting age specific foraging differences in trophic food level for both species. For harbour seals, δ15N did not differ significantly among ages while Hg and δ13C did. The δ13C in muscle supports that bearded seals in this study are benthic feeders and are part of a separate food web from ringed seals and harbour seals. Harbour seals had the highest levels of mercury and δ15N, indicating they feed at a higher trophic level relative to the other two seal species. Carbon and nitrogen isotopic ratios and Hg levels illustrate how resources are partitioned among three seal species and offer evidence for separation based on life stages within species.  相似文献   

20.
The aim of the present study was to identify food sources of bark-living oribatid mites to investigate if trophic niche differentiation contributes to the diversity of bark living Oribatida. We measured the natural variation in stable isotope ratios (15N/14N, 13C/12C) in oribatid mites from the bark of oak (Quercus robur), beech (Fagus sylvatica), spruce (Picea abies) and pine (Pinus sylvestris) trees and their potential food sources, i.e., the covering vegetation of the bark (bryophytes, lichens, algae, fungi). As a baseline for calibration the stable isotope signatures of the bark of the four tree species were measured and set to zero. Oribatid mite stable isotope ratios spanned over a range of about 13 δ units for 15N and about 7 δ units for 13C suggesting that they span over about three trophic levels. Different stable isotope signatures indicate that bark living oribatid mites feed on different food sources, i.e., occupy distinct trophic niches. After calibration stable isotope signatures of respective oribatid mite species of the four tree species were similar indicating close association of oribatid mites with the corticolous cover as food source. Overall, the results support the hypothesis that trophic niche differentiation of bark living oribatid mites contributes to the high diversity of the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号