首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyamine oxidase, purified 260-fold from maize shoots, was light yellow in colour. Maximum light-absorption was at 450 nm and was decreased by the addition of either sodium dithionite or spermidine, but not by putrescine. Under aerobic conditions, the enzyme could use p-benzoquinone as an electron acceptor. Cu2+ inhibited the enzyme activity, while SO3 was stimulatory. Several metal-binding agents and thiol reagents were without effect.  相似文献   

2.
The polyamine oxidase of barley shoots is associated with a particle which sediments in low centrifugal fields. The enzyme was removed from these particles by washing in 0·5 M NaCl and then purified about 24-fold. The purified enzyme oxidized spermine stoicheiometrically to 1,3-diaminopropane and 1-(3-aminopropyl)pyrroline (pH optimum 4·0). Spermidine was oxidized to 1,3-diaminopropane and 1-pyrroline (pH optimum 6·6). At their respective pH optima, spermine is oxidized about 30 times faster than spermidine. Hydrogen peroxide was formed in the course of the polyamine oxidation. The enzyme was not sensitive to several copper chelating reagents but 2-hydroxyethylhydrazine caused 50% inhibition at 5 × 10−4 M. The enzyme was also present in particles in the roots of barley seedlings and in extracts of the leaves of oats, maize, rye and wheat.  相似文献   

3.
Some structural and biochemical characteristics of polyamine oxidase (PAO) purified from maize shoots have been examined. The enzyme has only alanine as N-terminal amino acid and its N-terminal sequence shows a significant degree of homology with tryptophan 2-monooxygenase from Pseudomonas syringae pv. savastanoi. The pH optimum for the stability of the native enzyme is 5, similar to that of the barley leaf enzyme. Calorimetric analysis shows a single two-state transition at pH 6 with Tm 49.8 degrees. At pH 5 the thermal stability is increased by more than 14 degrees. Amine oxidation products, delta 1-pyrroline and diazabicyclononane, are competitive inhibitors of PAO activity (apparent Ki = 400 and 100 microM respectively). Moreover these compounds improve the thermal stability of the enzyme. N1-Acetylspermine, which is a good substrate for mammalian PAO, acts as a non-competitive inhibitor for the plant enzyme.  相似文献   

4.
A flavin-containing polyamine oxidase was isolated in an electrophoretically homogeneous state from cattle liver cytosol. The molecular mass, subunit composition and flavin content of the enzyme were determined; flavin, was shown to be covalently bound to the protein fragment of the polyamine oxidase molecule. Some optical and luminescent properties of the native and denatured enzyme were investigated. Denaturation and quenching were found to affect the luminescent properties of polyamine oxidase.  相似文献   

5.
The 45 kDa diphenylene iodonium-binding flavoprotein of the human neutrophil superoxide-generating oxidase has been purified by affinity chromatography. The polypeptide was eluted from Blue Memsep or 2',5'-ADP-agarose columns with either NADP or low concentrations of the specific inhibitor diphenylene iodonium. The purified protein was shown to bind FAD at a ratio of 1.09 mol of FAD/mol of protein. The reconstituted flavoprotein had a fluorescence spectrum similar, but not identical, to that of free FAD. It had an isoelectric point of approx. 4.0. The reconstituted flavoprotein displayed no diaphorase activity towards a range of artificial electron acceptors. Polyclonal antibodies raised against the pure protein inhibited superoxide generation by solubilized oxidase in a dose-dependent manner, and inhibited superoxide generation when incubated with either cytosol or membrane fractions in a reconstituted system. These antibodies precipitated the 45 kDa polypeptide together with a haem-containing 23 kDa protein thought to be the small subunit of cytochrome b-245. Antibodies raised against cytochrome P-450 reductase also precipitated these two polypeptides. These results are consistent with the 45 kDa polypeptide being the flavoprotein of the neutrophil superoxide-generating oxidase.  相似文献   

6.
7.
8.
Polyamine oxidase (PAO, EC 1.5.3.3) activity and polyamine content in the cell wall and soluble fractions obtained from embryos, endosperms and shoots and roots of etiolated or green seedlings of maize ( Zea mays L. cv. WF9) during the first 7 days of germination were investigated. Polyamine content was also determined in the trichloroacetic acid-soluble (free polyamines) and trichloroacetic acid insoluble (bound polyamines) fraction obtained from the same tissues. PAO activity, determined by the radiometric method based on the recovery of the labelled reaction product 1-pyrroline, was mostly localized in the cell wall fraction. The activity was very low in embryos and endosperms and present in traces in roots. In etiolated shoots PAO activity increased sharply, while in green shoots it was low and increased slowly. No polyamines were found in the cell wall fraction and only putrescine was detected in the soluble fraction, with the exception of the embryo, where spermidine and spermine were also present. In the TCA-soluble fraction of embryos, putrescine increased during imbibition, while spermidine and spermine decreased; in the endosperm no relevant changes in polyamines occurred. In the same fraction of green and etiolated seedlings, putrescine increased, giving a peak at days 3–5, while spermidine decreased to very low levels. The amount of bound polyamines was 1–4% of the free ones. The pattern of PAO activity seems to be unrelated to endogenous free polyamine content, which is the same in shoots and roots of etiolated and green seedlings. Enzyme activity, very low in ungerminated seeds, increased continuously during the progression of germination, especially in etiolated shoots, indicating a possible involvement in cell wall formation.  相似文献   

9.
10.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   

11.
1. Polyamine oxidase was purified from the soluble fraction of porcine liver by more than 70,000-fold to electrophoretic homogeneity using N8-acetylspermidine-Sepharose 4B affinity chromatography. 2. The molecular weight and isoelectric point of this enzyme were 62,000 and pH 4.5, respectively. 3. Optimal pH for the catalytic activity was close to 10.0. 4. The enzyme activity was enhanced by 5 mM dithiothreitol or 5 mM benzaldehyde. 5. Preferential substrates for this cytoplasmic PAO were N1-acetylspermine, N1-acetylspermidine and spermine. 6. Spermidine was not virtually the substrate for this enzyme. 7. The present results suggested the physiological roles of cytoplasmic PAO, being coupled with the reaction of spermidine/spermine N1-acetyltransferase, in recycling the cellular polyamines to putrescine.  相似文献   

12.
Maize polyamine oxidase (MPAO), the only member of the polyamine oxidase (PAO) family whose three-dimensional structure is known, is characterized by a 30 A long U-shaped catalytic tunnel located between the substrate binding domain and the FAD. To shed light on the MPAO ligand binding mode, we studied the inhibition properties of linear diamines, agmatine, prenylagmatine (G3), G3 analogues, and guazatine, and analyzed the structural determinants of their biological activity. Linear diamines competitively inhibited MPAO, with the inhibitory activity increasing as a function of the number of methylene groups. With regard to the guanidino competitive inhibitors, including agmatine, G3, and G3 analogues, the presence of a hydrophobic substituent constitutes the principal factor influencing MPAO inhibition, as the addition of a hydrophobic substituent to the guanidino group of both G3 and G3 analogues greatly increases the inhibitory activity. Moreover, results obtained by a molecular modeling procedure indicated that in their preferred orientation, G3 analogues point the ammonium group toward the narrow entrance of the tunnel, while the terminal hydrophobic group is located within the large entrance. The high binding affinity for MPAO exhibited by G3 and G3 analogues bearing a prenyl group as a substituent on the guanidino moiety is in agreement with the observation that the prenyl group binds in a well-defined hydrophobic pocket, mainly formed by aromatic residues. Finally, docking simulations performed with the charged and uncharged forms of MPAO inhibitors indicate that the stereoelectronic properties of the MPAO active site are consistent with the binding of inhibitors in the protonated form.  相似文献   

13.
Polyamine analogues have been studied as potential inhibitors or substrates of barley leaf polyamine oxidase. NH2(CH2)3NH(CH2)10NH2 was particularly effective as an inhibitor of spermine oxidation at pH 4·5 (Ki = 5 × 10?6 M). Methylglyoxal-bis(guanylhydrazone) inhibited spermine oxidation only slightly (Ki = 10?4 M). Activity with the polyamine analogues as substrates was generally 10% or less of the activity with spermine. The Km for oxygen was 3 × 10?4 M. The Km for spermine oxidation was independent of oxygen concentration. Using the N-methyl-2-benzothiazolone hydrazine reagent, 1-(3-aminopropyl)pyrroline was shown to be formed stoichiometrically by the enzyme on oxidation of spermine. The enzyme will not function as a dehydrogenase in the presence of oxygen with either potassium ferricyanide or dichlorophenolindophenol as electron acceptors. Activity in the leaves increased with age, up to 4 weeks. In the leaves of 11-week-old plants activity was lower than in leaves of 1-week-old plants. The enzyme was mainly associated with an easily-sedimented particulate fraction, and relatively small proportions were found in the cell wall or soluble fractions.  相似文献   

14.
Terence A. Smith 《Phytochemistry》1977,16(11):1647-1649
After purification, the polyamine oxidase from the leaves of oat seedlings grown in the dark appeared to be homogeneous on electrophoresis. The MW determined by density gradient centrifugation was 119 000. The enzyme would not oxidise diaminodipropylamine and neither diaminodipropylamine nor diaminopropane were inhibitors at concentrations up to 1 mM. With spermidine as substrate, the energy of activation was 19.7 kJ/mol and activity was reduced to 50% on heating for 10 min at 50°. With spermine as substrate, activity was increased up to 3-fold in the presence of M sodium chloride. This stimulation was not observed with spermidine as substrate The enzyme was also stimulated by sodium phosphate and sodium citrate at high concentrations. The pH for optimal stability was 6.5, the same as the pH for maximum activity with both spermidine and spermine as substrates. For spermidine and spermine the Kms were 8 × 10 ?6 M and 2 × 10 ?6 M respectively. Loss of activity on storage of leaves at ? 15° was ca 5 % per week and in extracts the loss was ca 10 % per week.  相似文献   

15.
16.
To test the feasibility of altering polyamine levels by influencing their catabolic pathway, we obtained transgenic tobacco (Nicotiana tabacum) plants constitutively expressing either maize (Zea mays) polyamine oxidase (MPAO) or pea (Pisum sativum) copper amine oxidase (PCuAO), two extracellular and H(2)O(2)-producing enzymes. Despite the high expression levels of the transgenes in the extracellular space, the amount of free polyamines in the homozygous transgenic plants was similar to that in the wild-type ones, suggesting either a tight regulation of polyamine levels or a different compartmentalization of the two recombinant proteins and the bulk amount of endogenous polyamines. Furthermore, no change in lignification levels and plant morphology was observed in the transgenic plants compared to untransformed plants, while a small but significant change in reactive oxygen species-scavenging capacity was verified. Both the MPAO and the PCuAO tobacco transgenic plants produced high amounts of H(2)O(2) only in the presence of exogenously added enzyme substrates. These observations provided evidence for the limiting amount of freely available polyamines in the extracellular space in tobacco plants under physiological conditions, which was further confirmed for untransformed maize and pea plants. The amount of H(2)O(2) produced by exogenously added polyamines in cell suspensions from the MPAO transgenic plants was sufficient to induce programmed cell death, which was sensitive to catalase treatment and required gene expression and caspase-like activity. The MPAO and PCuAO transgenic plants represent excellent tools to study polyamine secretion and conjugation in the extracellular space, as well as to determine when and how polyamine catabolism actually intervenes both in cell wall development and in response to stress.  相似文献   

17.
Purification and some properties of a novel microbial lactate oxidase   总被引:1,自引:0,他引:1  
Geotrichum candidum was found to produce a lactate oxidase. The enzyme was purified by gel filtration and ion-exchange chromatography. The purified lactate oxidase showed a molecular mass of 50 kDa under denaturing and about 400 kDa under non-denaturing conditions. Transmission electron micro-scopy analysis confirmed an octameric structure. FMN was found to be a cofactor for this enzyme. Polarographic studies confirmed an oxygen uptake by the lactate oxidase. The enzyme showed specificity towards the L isomer of lactate and did not oxidise pyruvate, fumarate, succinate, maleate and ascorbate. It was stable at alkaline pH and also for 15 min at 45°C. The addition of glycerol and dextran 500 000 to the enzyme sample enhanced storage stability. Received: 28 September 1995/Received revision: 10 January 1996/Accepted: 15 January 1996  相似文献   

18.
Hydrogen peroxide is the final electron acceptor for the biosynthesis of thyroid hormone catalyzed by thyroperoxidase at the apical surface of thyrocytes. Pig and human thyroid plasma membrane contain a Ca(2+)-dependent NAD(P)H oxidase that generates H(2)O(2) by transferring electrons from NAD(P)H to molecular oxygen. We purified from pig thyroid plasma membrane a flavoprotein which constitutes the main, if not the sole, component of the thyroid NAD(P)H oxidase. Microsequences permitted the cloning of porcine and human full-length cDNAs encoding, respectively, 1207- and 1210-amino acid proteins with a predicted molecular mass of 138 kDa (p138(Tox)). Human and porcine p138(Tox) have 86.7% identity. The strongest similarity was to a predicted polypeptide encoded by a Caenorhabditis cDNA and with rbohA, a protein involved in the Arabidopsis NADPH oxidase. p138(Tox) shows also similarity to the p65(Mox) and to the gp91(Phox) in their C-terminal region and have consensus sequences for FAD- and NADPH-binding sites. Compared with gp91(Phox), p138(Tox) shows an extended N-terminal containing two EF-hand motifs that may account for its calcium-dependent activity, whereas three of four sequences implicated in the interaction of gp91(Phox) with the p47(Phox) cytosolic factor are absent in p138(Tox). The expression of porcine p138(Tox) mRNA analyzed by Northern blot is specific of thyroid tissue and induced by cyclic AMP showing that p138(Tox) is a differentiation marker of thyrocytes. The gene of human p138(Tox) has been localized on chromosome 15q15.  相似文献   

19.
20.
Purification and properties of L-6-hydroxynicotine oxidase   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号