首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome. These data are discussed in terms of the apparent cell specificity of viral enhancer elements.  相似文献   

2.
3.
DNA-protein interactions involving enhancer and promoter sequences within the U3 regions of several avian retroviral long terminal repeats (LTRs) were studied by DNase I footprinting. The rat CCAAT/enhancer-binding protein, C/EBP, bound to all four viral LTRs examined. The Rous sarcoma virus binding site corresponded closely to the 5' limit of the LTR enhancer; nucleotides -225 to -188 were protected as a pair of adjacent binding domains. The Fujinami sarcoma virus LTR bound C/EBP at a single site at nucleotides -213 to -195. C/EBP also bound to the promoter region of the enhancerless Rous-associated virus-0 LTR at nucleotides -77 to -57. The avian myeloblastosis virus LTR bound C/EBP at three sites: nucleotides -262 to -246, -154 to -134, and -55 to -39. We have previously observed binding of C/EBP to an enhancer in the gag gene of avian retroviruses. A heat-treated nuclear extract from chicken liver bound to all of the same retroviral sequences as did C/EBP. Alignment of the avian retroviral binding sequences with the published binding sites for C/EBP in two CCAAT boxes and in the simian virus 40, polyoma, and murine sarcoma virus enhancers suggested TTGNNGCTAATG as a consensus sequence for binding of C/EBP. When two bases of this consensus sequence were altered by site-specific mutagenesis of the Rous sarcoma virus LTR, binding of the heat-stable chicken protein was eliminated.  相似文献   

4.
5.
6.
Sequence-specific toxicity of transfected retroviral DNA.   总被引:2,自引:0,他引:2  
Experimental gene transfer and viral infections can result in the accumulation of unintegrated DNA in target cells. The effects of such accumulation on target cell metabolism have not been directly studied. The experiments reported in this paper show that transfection of cloned retroviral long-terminal-repeat (LTR) DNA, or of a variety of eukaryotic promoters, into proliferating HeLa cells results in rapid, sequence-specific, and dose-dependent cell death. Plasmids containing the Rous sarcoma virus LTR or the human immunodeficiency virus LTR cloned in pUC-related plasmids are 5 to 10 times more toxic than pUC19. The demonstrated sensitivity of eukaryotic cells to exogenously introduced DNA has important implications for the interpretation of gene transfer experiments and may be relevant to the pathogenic mechanisms in the course of retroviral infections such as AIDS.  相似文献   

7.
R D Press  A Kim  D L Ewert    E P Reddy 《Journal of virology》1992,66(9):5373-5383
To test the effect of long terminal repeat (LTR) regulatory sequences on the transforming capability of the v-myb oncogene from avian myeloblastosis virus (AMV), we have constructed replication-competent avian retroviral vectors with nearly identical structural genes that express v-myb from either AMV or Rous sarcoma virus (RSV) LTRs. After transfection into chicken embryo fibroblasts, virus-containing cell supernatants were used to infect chicken myelomonocytic target cells from preparations of 16-day-old embryonic spleen cells. Both wild-type AMV and the virus expressing v-myb from AMV LTRs (RCAMV-v-myb) were able to transform the splenocyte cultures into a population of immature myelomonocytic cells. The transformed cells expressed the p48v-Myb oncoprotein and formed compact foci when grown in soft agar. In contrast, the virus expressing v-myb from RSV LTRs (RCAS-v-myb) was repeatedly unable to transform the same splenocyte cells, despite being able to infect fibroblasts with high efficiency. This difference in the transforming activities of v-myb-expressing viruses with different LTRs most likely results from the presence of a factor (or factors) within the appropriate myelomonocytic target cell that promotes specific expression from the AMV but not from the RSV LTR.  相似文献   

8.
Using less stringent hybridization conditions and cloned viral DNA probes representing the avian sarcoma virus gag, pol, env, and long terminal repeat (LTR) gene sequences, we detected related sequences in two avian species purportedly lacking all endogenous avian leukosis viruses, the ev- chicken and the Japanese quail. The blot hybridization patterns obtained with the various probes suggest the presence of between 40 and 100 copies of retrovirus-related sequences in the genomes of these two species. An ev- chicken genomic DNA library was prepared and screened with gag-specific and pol-specific DNA probes. Several different clones were obtained from this library and characterized. Analysis of these clones revealed that the retrovirus-related gene sequences are linked in the order LTR-gag-pol-env-LTR, a structure indicative of a complete provirus. These data indicate the presence of previously unidentified endogenous retrovirus species in avian cells, suggesting that under the appropriate conditions of hybridization additional, more distantly evolved families of endogenous retrovirus genes may be identified in vertebrate species.  相似文献   

9.
A Moloney murine leukemia virus (M-MuLV) recombinant carrying the v-src gene of avian sarcoma virus was generated by the introduction of a cloned portion of v-src from Schmidt-Ruppin A avian sarcoma virus into a molecular clone of M-MuLV provirus at the recombinant DNA level. The v-src sequences (lacking a portion of the 5' end of v-src) were inserted into the p30 region of the M-MulV gag gene so that M-MuLV gag and v-src were in the same reading frame. Transfection of this chimeric clone, pMLV(src), into NIH 3T3 cells which were constitutively producing M-MuLV gag and pol protein resulted in the formation of foci of transformed cells. Infectious and transforming virus could be recovered from the transformed cells. This virus was designated M-MuLV(src). M-MuLV(src)-transformed cells contained two novel proteins of 78 and 90 kilodaltons. The 78-kilodalton protein, p78gag-src, contained both gag and src determinants, exhibited kinase activity in an immune kinase assay, and is probably a fusion of Pr65gag and src. The 90-kilodalton protein, which is of the appropriate size to be the gPr80gag fused to src, contained gag determinants as well as a V8 protease cleavage fragment typical of the carboxy terminus of avian sarcoma virus pp60src. However, it could not be immunoprecipitated with an anti-v-src serum. M-MuLV(src)-transformed cells showed elevated levels of intracellular phosphotyrosine in proteins, although the elevation was intermediate compared with cells transformed with wild-type v-src. M-MuLV and amphotropic murine leukemia virus pseudotypes of M-MuLV(src) were inoculated into newborn NIH Swiss mice. Inoculated mice developed solid tumors at the site of inoculation after 3 to 6 weeks, with most animals dying by 14 weeks. Histopathological analysis indicated that the solid tumors were mesenchymally derived fibrosarcomas that were both invasive and metastatic.  相似文献   

10.
Recombinant murine retroviruses containing the src gene of the avian retrovirus Rous sarcoma virus were isolated. Such viruses were isolated from cells after transfection with DNAs in which the src gene was inserted into the genome of the amphotropic murine retrovirus 4070A. The isolated viruses had functional gag and pol genes, but they were all env defective since the src gene was inserted in the middle of the env gene coding region. Infectious transforming virus could be isolated only from cells transfected with DNA constructions in which the src gene was in the same polarity as that of a long terminal repeat of the amphotropic viral genome. These recombinant viruses encoded a pp60src protein with a molecular weight similar to that of the Schmidt-Ruppin strain of Rous sarcoma virus. In addition, the src protein(s) of these recombinant viruses was as active as protein kinases in the immune complex protein kinase assay. Intravenous injection of helper-independent Moloney and Friend murine leukemia virus pseudotypes of the src recombinant viruses into 6-week-old NIH Swiss mice resulted in the appearance of splenic foci within 2 weeks, splenomegaly and, later after infection (8 to 10 weeks), anemia. Infectious transforming virus could be recovered from the spleens of diseased animals. Such viruses encoded pp60src but not p21ras or mink cell focus-forming virus-related glycoproteins.  相似文献   

11.
We used a replication-competent retrovirus shuttle vector based on a DNA clone of the Schmidt-Ruppin A strain of Rous sarcoma virus to characterize rearrangements in circular viral DNA. In this system, circular molecules of viral DNA present after acute infection of cultured cells were cloned as plasmids directly into bacteria. The use of a replication-competent shuttle vector permitted convenient isolation of a large number of viral DNA clones; in this study, over 1,000 clones were analyzed. The circular DNA molecules could be placed into a limited number of categories. Approximately one-third of the rescued molecules had deletions in which one boundary was very near the edge of a long terminal repeat (LTR) unit. Subtle differences in the patterns of deletions in circular DNAs with one versus two copies of the LTR sequence were observed, and differences between deletions emanating from the right and left boundaries of the LTR were seen. A virus with a missense mutation in the region of the pol gene responsible for integration and exhibiting a temperature sensitivity phenotype for replication had a marked decrease in the number of rescued molecules with LTR-associated deletions when infection was performed at the nonpermissive temperature. This result suggests that determinants in the pol gene, possibly in the integration protein, play a role in the generation of LTR-associated deletions. Sequences in a second region of the genome, probably within the viral gag gene, were also found to affect the types of circular viral DNA molecules present after infection. Sequences in this region from different strains of avian sarcoma-leukosis viruses influenced the fraction of circular molecules with LTR-associated deletions, as well as the relative proportion of circular molecules with either one or two copies of the LTR. Thus, the profile of rearrangements in unintegrated viral DNA is complex and dependent upon the nature of sequences in the gag and pol regions.  相似文献   

12.
The avian myeloblastosis virus provirus inserted in a lambda bacteriophage, recombinant clone 11A1-1 (Souza et al., Proc. Natl. Acad. Sci. U.S.A. 77:3004-3008, 1980), was transfected into chicken embryo fibroblasts which had been preinfected with either Rous-associated virus type 61 or the transformation-defective avian sarcoma virus tdB77. Within 4 to 5 h after transfection, the cells were injected into 16-day-old chicken embryos or 1-day-old chicks. Acute myeloblastic leukemia developed after a long latent period. Filtered (0.22-micrometer pores) supernatant of transformed buffy-coat cell cultures from one leukemic chicken of the lambda 11A1-1 (tdB77) group rapidly transformed yolk sac cells in vitro. Results from an infectivity interference assay and analysis of proviral DNA fragments generated with restriction endonucleases were consistent with the presence in leukemic cells of defective avian myeloblastosis virus and tdB77 as the helper virus.  相似文献   

13.
14.
The Schmidt-Ruppin or the B77 strain of Rous sarcoma virus (RSV) was inoculated into limb buds of 4.5-days-old avian embryos. No sarcoma but blister formation was observed in those RSV-inoculated embryos. Protein kinase activity of pp60v-src in RSV-inoculated embryos, even in the site of virus inoculation, was the same as that in mock-infected embryos. This indicated that the expression of the v-src gene did not attain superiority over that of the c-src gene in RSV-inoculated embryos. The v-src gene was detected in every DNA from tissues of RSV-inoculated embryos but not in DNAs from tissues of RSV-inoculated chicken except for the DNA from Rous sarcoma. Those results confirmed that the lack of sarcoma induction in early avian embryos by RSV was due to the lack of the expression of the v-src gene which was present in the target cells.  相似文献   

15.
16.
The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone.  相似文献   

17.
Rous-associated virus 0 (RAV-0), an endogenous chicken virus, does not cause disease when inoculated into susceptible domestic chickens. An infectious unintegrated circular RAV-0 DNA was molecularly cloned, and the sequence of the long terminal repeat (LTR) and adjacent segments was determined. The sequence of the LTR was found to be very similar to that of replication-defective endogenous virus EV-1. Like the EV-1 LTR, the RAV-0 LTR is smaller (278 base pairs instead of 330) than the LTRs of the oncogenic members of the avian sarcoma virus-avian leukosis virus group. There is, however, significant homology. The most striking differences are in the U(3) region of the LTR, and in this region there are a series of small segments present in the oncogenic viruses which are absent in RAV-0. These differences in the U(3) region of the LTR could account for the differences in the oncogenic potential of RAV-0 and the avian leukosis viruses. I also compared the regions adjacent to the RAV-0 LTR with the available avian sarcoma virus sequences. A segment of approximately 200 bases to the right of the LTR (toward gag) is almost identical in RAV-0 and the Prague C strain of Rous sarcoma virus. The segment of RAV-0 which lies between the end of the env gene and U(3) is approximately 190 bases in length. Essentially this entire segment is present between env and src in the Schmidt-Ruppin A strain of Rous sarcoma virus. Most of this segment is also present between env and src in Prague C; however, in Prague C there is an apparent deletion of 40 bases in the region adjacent to env. In Schmidt-Ruppin A, but not in Prague C, about half of this segment is also present between src and the LTR. This arrangement has implications for the mechanism by which src was acquired. The region which encoded the gp37 portion of env appears to be very similar in RAV-0 and the Rous sarcoma viruses. However, differences at the very end of env imply that the carboxy termini of RAV-0, Schmidt-Ruppin A, and Prague C gp37s are significantly different. The implications of these observations are considered.  相似文献   

18.
19.
20.
Gene constructs consisting of human growth hormone (hGH) gene driven by promoter/regulatory sequence of mouse metallothionein (mMT), viral thymidine kinase (vTK), rat cholecystokinin (rCCK), or chicken beta-actin (cBA) gene were injected into the cytoplasm of fertilized medaka eggs via the micropyle. More than 49% of the injected embryos survived at hatching. Up to 26% of the survivors showed integration of the introduced gene construct, as determined by polymerase chain reaction analysis and subsequent confirmation by Southern blot hybridization of the genomic DNA. A significant fraction of F1 progeny, derived from crosses between transgenic founders and the nontransgenic individuals, inherited the transgene. Expression of hGH gene was also observed in some of the P1 founders and F1 transgenic progeny carrying mMT-hCG or cBA-hGH gene. Furthermore, the growth performance of the P1 mMT-hGH and cBA-hGH transgenic founders and F1 cBA-hGH F1 transgenic progeny was significantly greater than their full sibling, nontransgenic individuals. In addition to the microinjection experiment, a gene construct containing the long-terminal repeat (LTR) sequence of avian Rous sarcoma virus (RSV) and rainbow trout (rt) GH2 cDNA was introduced into embryos of medaka by electroporation using an exponential decay electroporator. Approximately 70% of the electroporated embryos survived at hatching, and 20% of the survived individuals integrated RSVLTR-rtGH2 cDNA into their genomes. These two techniques will greatly enhance the ability to study regulation of gene expression in transgenic animals during differentiation and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号