首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of porcine aortic endothelial cytosol, soluble guanylyl cyclase purified from bovine lung was activated by L-arginine up to 2.5-fold, with an EC50 of about 6 microM. This activation was dependent on NADPH and Ca2+. The EC50 for Ca2+ was about 60 nM. No effect of L-arginine on guanylyl cyclase was observed when the cytosolic proteins were heat-denaturated. The effect of L-arginine was inhibited by NG-monomethyl-L-arginine and hemoglobin. These results indicate that endothelial cells contain a cytosolic enzyme which is directly or indirectly regulated by Ca2+ and converts L-arginine into a compound which in stimulating soluble guanylyl cyclase behaves similar to endothelium-derived relaxing factor.  相似文献   

2.
Guanylyl cyclase from bovine rod outer segments was solubilized using Triton X-100 and a high concentration of KCl, and its regulation was studied. The efficiency of solubilization was about 50-90% of total activity. When the Ca2+ content was lowered (less than 80 nM), guanylyl cyclase was activated about 2-fold. In the presence of higher concentrations of Ca2+ (greater than 140 nM), the activity was decreased. The regulation by Ca2+ was also demonstrated with solubilized preparations. In the presence of 186 nM Ca2+ which inhibited guanylyl cyclase, La3+ activated the enzyme about 2-fold, suggesting that the Ca2(+)-binding protein similar to other Ca2(+)-binding proteins associates with guanylyl cyclase regulation. Sodium nitroprusside and nitric oxide which are activators of soluble guanylyl cyclase in other tissues also activated the retinal guanylyl cyclase. Maximum activation by sodium nitroprusside was 20-fold using Mg2+ as a cofactor. Activation by nitric oxide and related compounds suggests that retinal guanylyl cyclase contains a heme prosthetic group that may participate in a novel regulatory mechanism for this enzyme.  相似文献   

3.
Beef brain cortex adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) activity is 84--88% inhibited by 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid in the absence of F- but only 50--60% inhibited by 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid in the presence of F-. In either case, further increase in EGTA concentration did not alter the degree of inhibition. The inhibition can be completely reversed in both cases by addition of 3 - 10(-5) M Ca2+, (yielding a [free Ca2+] of approximately 2 - 10(-6) M) and 5 - 10(-5) M Mn2+ or Co2+ and partially by 5 - 10(-5) M Sr2+ but not by addition of 5 - 10(-5) M Ba2+, Zn2+, Ni2+ or Fe2+. A [free Ca2+] of 7.2 - 10(-5) M markedly inhibited cyclase activity in the presence of F-. Solubilization by 1.8% Triton X-100 resulted in an enzyme preparation no longer stimulated by NaF and 100% inhibited by the addition of 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid either in the absence or presence of NaF. However, in contrast to ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-TETRAACETIC ACID, EDTA had no measurable effect on adenylate cyclase either in the presence or absence of NaF and ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid did not affect ATPase or phosphodiesterase activities. The data is rationalized by the postulation of two independent enzyme components in brain cortex: one component is about six-fold activated by NaF and the NaF effect is enhanced by low concentrations of Ca2+ and Mg2+. A second component is totally Ca2+ dependent and inhibited by high concentrations of F-. Mn2+, Co2+ and Sr2+ appear to be in vitro Ca2+ substitutes for both enzyme systems. On this basis, Triton X-100 treatment results in about a three-fold increase in specific activity of the Ca2+ dependent cyclase component but a complete abolition of the NaF stimulated component.  相似文献   

4.
Inorganic pyrophosphatase from bovine retinal rod outer segments.   总被引:1,自引:0,他引:1  
Rod outer segments from bovine retina contain a higher level of intracellular inorganic pyrophosphatase (EC 3.6.1.1) activity than has been found in any other mammalian tissue; the specific activity in extracts of soluble outer segment proteins is more than 6-fold higher than in extracts from bovine liver and more than 24-fold higher than in skeletal muscle extracts. This high activity may be necessary to keep inorganic pyrophosphate concentrations low in the face of the high rates of pyrophosphate production that accompany the cGMP flux driving phototransduction. We have begun to explore the role of inorganic pyrophosphatase in photoreceptor cGMP metabolism by 1) studying the kinetic properties of this enzyme and its interactions with divalent metal ions and anionic inhibitors, 2) purifying it and studying its size and subunit composition, and 3) examining the effects of pyrophosphate on rod outer segment guanylyl cyclase. Km for magnesium pyrophosphate was 0.9-1.5 microM, and the purified enzyme hydrolyzed > 885 mumol of PPi min-1 mg-1. The enzyme appears to be a homodimer of 36-kilodalton subunits when analyzed by gel electrophoresis and density gradient centrifugation, implying that kcat = 10(3) s-1, and kcat/Km = 0.7-1 x 10(9) M-1 s-1. The enzyme was inhibited by Ca2+ at submicromolar levels: 28% inhibition was observed at 138 nM [Ca2+], and 53% inhibition at 700 nM [Ca2+]. Imidodiphosphate acted as a competitive inhibitor, with Ki = 1.2 microM, and fluoride inhibited half-maximally approximately 20 microM. Inhibition studies on rod outer segment guanylyl cyclase confirmed previous reports that pyrophosphate inhibits guanylyl cyclase, suggesting an essential role for inorganic pyrophosphatase in maintaining cGMP metabolism.  相似文献   

5.
In Dictyostelium discoideum extracellular cAMP stimulates guanylyl cyclase and phospholipase C; the latter enzyme produces Ins(1,4,5)P3 which releases Ca2+ from internal stores. The following data indicate that intracellular Ca2+ ions inhibit guanylyl cyclase activity. 1) In vitro, Ca2+ inhibits guanylyl cyclase with IC50 = 41 nM Ca2+ and Hill-coefficient of 2.1. 2) Extracellular Ca2+ does not affect basal cGMP levels of intact cells. In electro-permeabilized cells, however, cGMP levels are reduced by 85% within 45 s after addition of 10(-6) M Ca2+ to the medium; halfmaximal reduction occurs at 200 nM extracellular Ca2+. 3) Receptor-stimulated activation of guanylyl cyclase in electro-permeabilized cells is also inhibited by extracellular Ca2+ with half-maximal effect at 200 nM Ca2+. 4) In several mutants an inverse correlation exists between receptor-stimulated Ins(1,4,5)P3 production and cGMP formation. We conclude that receptor-stimulated cytosolic Ca2+ elevation is a negative regulator of receptor-stimulated guanylyl cyclase.  相似文献   

6.
Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina.  相似文献   

7.
The inhibition of soluble guanylyl cyclase by Ca2+ has been kinetically characterized and the results support a two-metal-ion catalytic mechanism for formation of cGMP. Ca2+ reversibly inhibits both the basal and NO-stimulated forms of bovine lung soluble guanylyl cyclase. Inhibition is independent of the activator identity and concentration, revealing that Ca2+ interacts with a site independent of the heme regulatory site. Inhibition by Ca2+ is competitive with respect to Mg2+ in excess of substrate, with Kis values of 29 +/- 4 and 6.6 +/- 0.6 microM for the basal and activated states, respectively. Ca2+ inhibits noncompetitively with respect to the substrate MgGTP in both activity states. The qualitatively similar inhibition pattern and quantitatively different Ki values between the basal and NO-stimulated states suggest that the Ca2+ binding site undergoes some structural modification upon activation of the enzyme. The competitive nature of Ca2+ inhibition with respect to excess Mg2+ is consistent with a two-metal-ion mechanism for cyclization.  相似文献   

8.
Nitric oxide (NO) is a key mediator in many physiological processes and one of the major receptors through which NO exerts its effects is soluble guanylyl cyclase. Guanylyl cyclase converts GTP to cyclic GMP as part of the cascade that results in physiological processes such as smooth muscle relaxation, neurotransmission, inhibition of platelet aggregation and immune response. The properties of A-350619, a novel soluble guanylyl cyclase activator, were examined to determine the modulatory effect on the catalytic properties of soluble guanylyl cyclase. A-350619 increased V(max) from 0.1 to 14.5 micromol/min/mg (145 fold increase), and lowered K(m) from 300 to 50 microM (6 fold decrease). When YC-1 (another sGC activator) and A-350619 were combined, a 156 fold increase in V(max) and a 5 fold decrease in Km were observed, indicating that the modulation of the enzyme brought about by YC-1 and A-350619 are not additive, suggesting a common binding site. Activation of soluble guanylyl cyclase by A-350619 was partially inhibited by ODQ, a specific inhibitor of soluble guanylyl cyclase by oxidation of the enzyme heme. YC-1 and A-350619 after pre-treatment with N-omega-nitro-L-arginine, an NO-synthase inhibitor, relaxed cavernosum tissue strips in a dose-dependent manner with EC(50) of 50 microM and 80 microM, respectively. Addition of SNP potentiated the relaxation effect of YC-1 and A-350619, shifting the dose-response curve to the left to 3 microM and 10 microM, respectively. Consistent with its biochemical activity, A-350619 (1 micromol/kg) alone induced penile erection in a conscious rat model. Activation of soluble guanylyl cyclase in cavernosum tissue as an alternate method of enhancing the effect of NO may provide a novel treatment of sexual dysfunction.  相似文献   

9.
Particulate guanylyl cyclase (pGC) and soluble guanylyl cyclase (sGC) are cGMP-generation systems distributed in different intracellular locations. Our aim was to test the hypothesis that the functional effects of cGMP produced by pGC and sGC on contraction and Ca2+ transients would differ in ventricular myocytes. We measured myocyte shortening from adult mice using a video edge-detector and investigated the functional changes after stimulating pGC with C-type natriuretic peptide (CNP; 10(-8) M and 10(-7) M) or sGC with S-nitroso-N-acetyl-penicillamine (SNAP; nitric oxide donor; 10(-6) M and 10(-5) M). Significant concentration-dependent decreases in percentage shortening (PCS), maximal rate of shortening (RSmax), and relaxation (RRmax) were produced by CNP. To a similar degree, SNAP concentration-dependently reduced PCS, RSmax, and RRmax. The addition of Rp-8-[(4-chlorophenyl)thio]-cGMPS triethylamine (cGMP-dependent protein kinase inhibitor; 5 x 10(-6) M) or erythro-9-(2-hydroxy-3-nonyl) adenine (cGMP-stimulated cAMP phosphodiesterase inhibitor; 10(-5) M) reduced the responses induced by CNP or SNAP, suggesting that their actions were through cGMP-mediated pathways. While SNAP significantly increased intracellular cGMP concentration by 57%, CNP had little effect on cGMP production. We also found that CNP markedly decreased the amplitude of Ca2+ transients while SNAP had little effect, suggesting the cGMP generated by sGC may decrease myofilament Ca2+ sensitivity. The small amount of cGMP generated by pGC had a major effect in reducing Ca2+ level. This study suggested the existence of compartmentalization for cGMP in ventricular myocytes.  相似文献   

10.
The guanosine 3',5'-cyclic monophosphate (cGMP) level in the mouse splenic lymphocytes was increased about 2- to 3-fold by concanavalin A. This increase was completely dependent on the presence of Ca2+ in the medium. Homogenates of mouse splenic lymphocytes contained significant guanylate cyclase [EC 4.6.1.2] activity in both the 105,000 X g (60 min) particulate and supernatant fractions and both fractions required Mn2+ for full activity. Calcium ion (3mM) activated soluble guanylate cyclase 3-fold at a relatively low concentration of Mn2+ (less than 1mM) but inhibited the particulate enzyme slightly at all Mn2+ concentrations tested. Concanavalin A itself did not stimulate either fraction of guanylate cyclase. Thus these results suggest that elevation of the cGMP level in lymphocytes by concanavalin A might be brought about by stimulation of Ca2+ uptake and activation of soluble guanylate cyclase by the latter.  相似文献   

11.
We have previously shown that ANP causes differential constriction of the splenic vasculature of the rat (veins greater than arteries), which may be inhibited by blocking the production of cGMP with A7195. In this paper, we report experiments done on vessels derived from guanylyl cyclase (GC)-A knockout mice. Small splenic arteries ( approximately 150-microm diameter) and veins ( approximately 250-microm diameter) were dissected from male GC-A-deficient 129sv mice or age-matched wild-type controls and mounted in a wire myograph. In the wild-type mice, ANP exhibited higher potency in the veins than in the arteries (EC(50) values wild-type mice: artery, 8 +/- 3 x 10(-9) M, n = 5 vs. vein, 6 +/- 4 x 10(-10) M, n = 5; P < 0.05). The concentration-response curve for ANP-induced vasoconstriction was also shifted leftward in denuded compared with intact arteries (EC(50) values: denuded artery: 5 +/- 3 x 10(-10) M, n = 5 vs. intact artery, 8 +/- 3 x 10(-9) M, n = 5; P < 0.05), i.e., the denuded vessels were more reactive. By contrast, ANP caused no significant change in tension from baseline in intact splenic arteries, intact splenic veins, or denuded splenic arteries derived from the GC-A-deficient mice, although these vessels did show normal concentration-dependent increases in tension to phenylephrine. We conclude that ANP causes vasoconstriction in the splenic vasculature by an endothelium-independent mechanism, mediated via guanylyl cyclase.  相似文献   

12.
D Fleischman  M Denisevich 《Biochemistry》1979,18(23):5060-5066
The guanylate cyclase activity of axoneme--basal apparatus complexes isolated from bovine retinal rods has been investigated. The Mg2+ and Mn2+ complexes of GTP4- serve as substrates. Binding of an additional mole of Mg2+ or Mn2+ per mole of enzyme is required. Among cations which are ineffective are Ca2+, Ni2+, Fe2+, Fe3+, Zn2+, and Co2+. The kinetics are consistent with a mechanism in which binding of Mg2+ or Mn2+ to the enzyme must precede binding of MgGTP or MnGTP. The apparent dissociation constants of the Mg--enzyme complex and the Mn--enzyme complex are 9.5 x 10(-4) and 1.1 x 10(-4) M, respectively. The apparent dissociation constants for binding of MgGTP and MnGTP to the complex of the enzyme with the same metal are 7.9 x 10(-4) and 1.4 x 10(-4) M, respectively. The cyclase activity is maximal and independent of pH between pH 7 and 9. KCl and NaCl are stimulatory, especially at suboptimal concentrations of Mg2+ or Mn2+. Ca2+ and high concentrations of Mg2+ and Mn2+ are inhibitory. Ca2+ inhibition appears to require the binding of 2 mol of Ca2+ per mol of enzyme. The dissociation constant of the Ca2--enzyme complex is estimated to be 1.4 x 10(-6) M2. The axoneme--basal apparatus preparations contain adenylate cyclase activity whose magnitude is 1--10% that of the guanylate cyclase activity.  相似文献   

13.
Cultured bovine endothelial cells (EC) have specific receptors for endothelin (ET)-3 functionally coupled to phosphoinositide breakdown. We studied whether ET-3 stimulates synthesis of nitric oxide (NO), an endothelium-derived relaxing factor that activates soluble guanylate cyclase in EC, and whether the ET-3-induced NO formation involves G-proteins. ET-3 dose-dependently stimulated production of intracellular cGMP in EC, of which effects were abolished by pretreatment with NG-monomethyl L-arginine, an inhibitor of NO synthesis, and methylene blue, an inhibitor of soluble guanylate cyclase. The stimulatory effects of ET-3 on cGMP production, inositol trisphosphate formation and increase in cytosolic free Ca2+ concentration were similarly blocked by pretreatment with pertussis toxin (PTX). These data suggest that ET-3 induces synthesis of NO mediated by phosphoinositide breakdown via PTX-sensitive G-protein in EC.  相似文献   

14.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

15.
To determine whether endothelium-derived relaxing factor (EDRF) contributes to the regulation of endothelial permeability, the transendothelial flux of 14C-sucrose, a marker for the paracellular pathway across endothelial monolayers (Oliver, J. Cell. Physiol. 145:536-548, 1990), was examined in monolayers of bovine aortic endothelial cells grown on collagen-coated filters. The permeability coefficient of 14C-sucrose was significantly decreased by 10(-3) M 8-Bromoguanosine 3',5'-cyclic monophosphate or by 5 x 10(-6) M glyceryl trinitrate, an activator of soluble guanylate cyclase. Depletion of L-arginine from endothelial monolayers increased 14C-sucrose permeability from 3.21 +/- 0.59 to 3.88 +/- 0.50 x 10(-5) cm.sec-1 (mean +/- SEM; n = 6; P < 0.05). The acute administration of 5 x 10(-4) M L-arginine to monolayers depleted of this amino acid decreased 14C-sucrose permeability from 2.91 +/- 0.27 to 2.52 +/- 0.26 x 10(-5) cm.sec-1 (n = 11; P < 0.05). 14C-sucrose permeability was increased by 10(-7) M bradykinin and this effect was enhanced by the presence of each one of the following compounds: 10(-5) M methylene blue, 4 x 10(-6) M oxyhemoglobin, 5 x 10(-4) M NG-methyl-L-arginine or 5 x 10(-4) M N omega-nitro-L-arginine. These results suggest that EDRF contributes to the sealing of the endothelial monolayer and that EDRF released by bradykinin acts as a feedback inhibitor attenuating the increase in endothelial permeability induced by this peptide. Because endothelial cells have the ability to contract and relax and possess guanylate cyclase responsive to nitric oxide, our results suggest that EDRF decreases 14C-sucrose permeability by relaxing endothelial cells, thereby narrowing the width of endothelial junctions.  相似文献   

16.
We investigated the effects of endothelins (ETs) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ET-3 increased cGMP formation in a concentration-dependent manner (EC50 = 98nM), which was 2.5 times higher than that of ET-1. The ET(B)receptor agonists sarafotoxin-S6c and IRL 1620 also increased cGMP production, mimicking the effects of the ETs. The ET(B) receptor antagonist BQ 788, but not the ET(A) receptor antagonist BQ610, dose-dependently blocked ET-3-stimulated cGMP formation (IC50=10nM). The phorbol ester, Phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylyl cyclase in smooth muscle, dose-dependently inhibited ET-3-stimulated cGMP accumulation (IC50=66nM). LY83583 and ODQ, inhibitors of soluble guanylyl cyclases, as well as inhibitors of the nitric oxide cascade and of intracellular Ca2+ elevation had no appreciable effect on ET-3-induced cGMP production. ET-3 markedly inhibited carbachol-induced intracellular Ca2+ mobilization. We conclude that ET-3 increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ET(B) receptor subtype and subsequent stimulation of the membrane-bound guanylyl cyclase. Elevation of cGMP by ET and the subsequent inhibition of muscarinic stimulation of intracellular Ca2+ mobilization by the cyclic nucleotide could serve to modulate the contractile effects of Ca2+-mobilizing agonists in the iris sphincter smooth muscle.  相似文献   

17.
The formation of nitric oxide (NO) by an L-arginine:NO synthase and its stimulation of the soluble guanylate cyclase was studied in rat whole adrenal and bovine cortex and medulla cytosol. In the presence of L-arginine, the stimulation of soluble guanylate cyclase was accompanied by the formation of citrulline and NO2-, formed from NO. The NO synthase was NADPH- and Ca(2+)-dependent and was inhibited by several L-arginine analogues. These results indicate that rat and bovine adrenal cytosol contains an L-arginine:NO synthase.  相似文献   

18.
In the present investigation we have examined the hypothesis that calcium-dependent K+ channels (K(Ca)) are involved in the sodium nitroprusside (SNP)-induced vasodilatation of goat coronary artery. SNP (10(-9)-3 x 10(-6) M), added cumulatively, relaxed K+ (30 mM)-contracted coronary artery ring segments in a concentration-dependent manner with an EC50 of 1.32 x 10(-7) M (95% CL, 0.93-1.86 x 10(-7) M; n = 21). K(Ca) blocker, tetraethyl ammonium (1 mM) caused a rightward shift in the concentration-response curve of SNP with a corresponding increase in EC50 (1.62 x 10(-6) M; 95% CL, 0.44-6.02 x 10(-6) M, n = 4) of nitro vasodilator. Lowering of extra cellular Ca2+ in the physiological saline solution to 1/4 of normal selectively attenuated the vasorelaxant response of SNP, thereby causing an increase in its EC50 (2.4 x 10(-6) M; 95% CL, 1.23-4.68 x 10(-6) M, n = 4). Exposure of the tissues to high K+ (80 mM) solution, a protocol adopted to reduce the K+ gradient across the cell membrane, markedly inhibited the coronary artery relaxations induced by SNP (EC50, 2.54 x 10(-6) M; 95% CL, 1.31-4.91 x 10(-6) M, n = 4), when compared with tissues contracted with low K+ (30 mM) solution (EC50 7.9 x 10(-8); 95% CL, 4.4 x 10(-8)-1.44 x 10(-7) M, n = 6). The results suggested that a major component of SNP-induced relaxation of goat coronary artery was mediated by K(Ca) channels.  相似文献   

19.
Oxidized low-density lipoprotein (LDLox) is a molecule with strong atherogenic properties. In a concentration dependent fashion, LDLox antagonized the activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor (EDRF), which was produced in vitro by incubation of a partially purified EDRF-forming enzyme in the presence of L-arginine, Ca2+ and NADPH. The inhibitory effect of LDLox was potentiated by preincubation of the soluble guanylate cyclase with LDLox, but not when the EDRF-forming enzyme was pretreated with LDLox. As LDLox did not diminish the calmodulin-dependent conversion of L-arginine into L-citrulline by the EDRF-forming enzyme it would appear that EDRF-biosynthesis was not affected by LDLox. It is suggested that the impaired relaxant response of atherosclerotic blood vessels to endothelium-dependent vasodilators was not due to a reduced formation of EDRF but due to a diminished responsiveness of soluble guanylate cyclase.  相似文献   

20.
Nitric Oxide Synthase in Bovine Superior Cervical Ganglion   总被引:1,自引:0,他引:1  
Abstract: We investigated the mechanism of increases in cyclic GMP levels in bovine superior cervical ganglion (SCG) in response to muscarinic receptor stimulation. Acetylcholine increased cyclic GMP levels in SCG. This increase was inhibited by N G-methyl-L-arginine (NMA), and the inhibition was reversed by L-arginine. Soluble nitric oxide (NO) synthase was partially purified from bovine SCG using 2',5'-ADP Sepharose affinity chromatography. The resulting enzyme activity was Ca2+/calmodulin dependent and required NADPH and tetrahydrobiopterin as co-factors. Superoxide dismutase protected and oxyhemo-globin blocked the effect of NO formed by the enzyme. NMA inhibited the activity of the NO synthase. In western blots, an antibody generated against rat brain NO synthase specifically recognized the NO synthase from SCG as a 155-kDa protein band. Immunohisto chemistry using the same antibody demonstrated that NO synthase was localized in postganglionic neuronal cell bodies of the SCG. Immunofluorescent labeling showed that some of the cells staining positive for dopamine-β-hydroxylase also contained NO synthase. Thus, NO is synthesized in specific cells within bovine SCG, including sympathetic neurons, and mediates the acetylcholine-induced stimulation of soluble guanylyl cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号