首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
IL-4 secreted by activated T cells is a pleiotropic cytokine affecting growth and differentiation of diverse cell types such as T cells, B cells, and mast cells. We investigated the upstream regulatory elements of the human IL-4 promoter. A novel T cell-specific negative regulatory element (NRE) composed of two protein-binding sites were mapped in the 5' flanking region of the IL-4 gene: -311CTCCCTTCT-303 (NRE-I) and -288CTTTTTGCTT-TGC-300 (NRE-II). A T cell-specific protein Neg-1 and a ubiquitous protein Neg-2 binding to NRE-I and NRE-II, respectively, were identified. Furthermore, a positive regulatory element was found 45 bp downstream of the NRE. The enhancer activity of the PRE was completely suppressed when the NRE was present. These data suggest that IL-4 promoter activity is normally down-regulated by an NRE via repression of the enhancer positive regulatory element. These data may have implications for the stringent control of IL-4 expression in T cells.  相似文献   

6.
7.
We have determined the nucleotide sequence of core histone genes and flanking regions from two of approximately 11 different genomic histone clusters of the nematode Caenorhabditis elegans. Four histone genes from one cluster (H3, H4, H2B, H2A) and two histone genes from another (H4 and H2A) were analyzed. The predicted amino acid sequences of the two H4 and H2A proteins from the two clusters are identical, whereas the nucleotide sequences of the genes have diverged 9% (H2A) and 12% (H4). Flanking sequences, which are mostly not similar, were compared to identify putative regulatory elements. A conserved sequence of 34 base-pairs is present 19 to 42 nucleotides 3' of the termination codon of all the genes. Within the conserved sequence is a 16-base dyad sequence homologous to the one typically found at the 3' end of histone genes from higher eukaryotes. The C. elegans core histone genes are organized as divergently transcribed pairs of H3-H4 and H2A-H2B and contain 5' conserved sequence elements in the shared spacer regions. One of the sequence elements, 5' CTCCNCCTNCCCACCNCANA 3', is located immediately upstream from the canonical TATA homology of each gene. Another sequence element, 5' CTGCGGGGACACATNT 3', is present in the spacer of each heterotypic pair. These two 5' conserved sequences are not present in the promoter region of histone genes from other organisms, where 5' conserved sequences are usually different for each histone class. They are also not found in non-histone genes of C. elegans. These putative regulatory sequences of C. elegans core histone genes are similar to the regulatory elements of both higher and lower eukaryotes. The coding regions of the genes and the 3' regulatory sequences are similar to those of higher eukaryotes, whereas the presence of common 5' sequence elements upstream from genes of different histone classes is similar to histone promoter elements in yeast.  相似文献   

8.
9.
10.
We have mapped DNase I-hypersensitive sites and topoisomerase II (topo II) sites in the chicken beta-globin locus, which contains four globin genes (5'-rho-beta H-beta A-epsilon-3'). In the 65 kilobases (kb) mapped, 12 strong hypersensitive sites were found clustered within the 25-kb region from 10 kb upstream of rho to just downstream of epsilon. The strong sites were grouped into several classes based on their tissue distribution, developmental pattern, and location. (i) One site was present in all cells examined, both erythroid and nonerythroid. (ii) Three sites, located upstream of the rho-globin gene, were present at every stage of erythroid development, but were absent from nonerythroid cells. (iii) Four sites at the 5' ends of each of the four globin genes were hypersensitive only in the subset of erythroid cells that were transcribing or had recently transcribed the associated gene. (iv) Another three sites, whose pattern of hypersensitivity also correlated with expression of the associated gene, were found 3' of rho, beta H, and epsilon. (v) A site 3' of beta A and 5' of epsilon was erythroid cell specific and present at all developmental stages, presumably reflecting the activity of this enhancer throughout erythroid development. We also mapped the topo II sites in this locus, as determined by teniposide-induced DNA cleavage. All strong teniposide-induced cleavages occurred at DNase I-hypersensitive sites, while lesser amounts of cleavage were observed in transcribed regions of DNA. Most but not all of the DNase I-hypersensitive sites were topo II sites. These data are consistent with the hypothesis that, in vivo, topo II preferentially acts on nucleosome-free regions of DNA but suggest that additional topo II regulatory mechanisms must exist.  相似文献   

11.
12.
13.
14.
The alpha-globin gene is expressed at a constitutively high level upon gene transfer into both erythroid and nonerythroid cells. The beta-globin gene, on the other hand, is dependent on the presence of a linked viral enhancer for its efficient expression upon transfer into heterologous cells. In this report, we describe a novel regulatory element within the structural alpha-globin gene which can activate its own promoter to result in a high level of expression in both erythroid and non-erythroid cells. This regulatory element does not appear to have the properties of a classical enhancer. While this element exerts a positive effect on its own promoter, we have demonstrated in a previous study that the same element exerts a negative effect on heterologous genes such as the beta- and gamma-globin genes. In this study, we localize this element to a 259 nucleotide fragment immediately downstream from the translation initiation codon which is partially overlapped by a DNase I hypersensitive domain only in erythroid cells. We propose that this element may activate the alpha-globin gene promoter in all cell types in vivo as it does in vitro. The specificity of erythroid expression of the alpha-globin gene in vivo is probably determined by a "permissive" chromatin configuration in erythroid cells and a "nonpermissive" configuration in non-erythroid cells.  相似文献   

15.
16.
The histone H4 multigene family of Physarum polycephalum consists of two genes, H41 and H42. Both genes have an unusual structure in that they are interrupted by a small intron. The structure of the P. polycephalum H4 genes is discussed and compared to the structure of histone genes of other organisms. S1 nuclease analysis was used to map the 5' and 3' ends of the histone H4 messengers. We show that the histone H4 genes have a hybrid structure; they are interrupted by an intervening sequence, as in replacement variant histone genes of higher eukaryotes, but their 5' and 3' noncoding regions have the properties of replication-dependent histone genes: the 5' and 3' leader and trailer sequences are short, possess a 3'-hyphenated dyad symmetry element, and a CAGA sequence is found 3' to the hyphenated hairpin structure. This report also provides evidence that both genes are expressed in late G2 phase as well as in S phase and that their expression is temporally coordinated and quantitatively similar during the cell cycle.  相似文献   

17.
18.
The mouse genomic clone for the prealbumin (transthyretin) gene was cloned, and its upstream regulatory regions were analyzed. The 200 nucleotides 5' to the cap site when placed within a recombinant plasmid were sufficient to direct transient expression in HepG2 (human hepatoma) cells, but this DNA region did not support expression in HeLa cells. The sequence of the 200-nucleotide region is highly conserved between mouse and human DNA and can be considered a cell-specific promoter. Deletions of this promoter region identified a crucial element for cell-specific expression between 151 and 110 nucleotides 5' to the RNA start site. A region situated at about 1.6 to 2.15 kilobases upstream of the RNA start site was found to stimulate expression 10-fold in HepG2 cells but not in HeLa cells. This far upstream element was invertible and increased expression from the beta-globin promoter in HepG2 cells. Unlike the simian virus 40 enhancer, the prealbumin enhancer would not stimulate beta-globin synthesis in HeLa cells, and even the simian virus 40 enhancer did not stimulate the prealbumin promoter in HeLa cells. Thus, we identified in the prealbumin gene two DNA elements that respond in a cell-specific manner: a proximal promoter including a crucial sequence between -108 and -151 nucleotides and a distant enhancer element located between 1.6 and 2.15 kilobases upstream.  相似文献   

19.
The human fetal G gamma-globin and adult beta-globin genes are expressed in a tissue- and developmental stage-specific pattern in transgenic mice: the G gamma gene in embryonic cells and the beta gene in fetal and adult erythroid cells. Several of the cis-acting DNA sequences thought to be responsible for these patterns of expression are located 5' to the G gamma-globin gene and 3' to the beta-globin gene. To further define the locations and functional roles of these elements, we examined the effects of 5' truncations on the expression of the G gamma-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene. We found that sequences between -201 and -136 are essential for expression of the G gamma-globin gene, whereas those upstream of -201 have little effect on the level or tissue or stage specificity of G gamma-globin expression. The G gamma-globin upstream sequences from -201 to -136 were, furthermore, capable of activating a linked beta-globin gene in embryonic blood cells; however, a G gamma-globin fragment from -383 to -206 was similarly active in this assay, and the complete fragment from -383 to -136 was considerably more active than either of the smaller fragments, suggesting the presence of multiple cis-acting elements for embryonic blood cells. Our data also suggested the possibility of a negative regulatory element between -201 and -136. These results are discussed in relation to several DNA elements in the G gamma-globin upstream region, which have been shown to bind nuclear factors in erythroid cells. Finally, we observed that removal of the beta-globin 3'-flanking sequences, including the 3' enhancer, from the G gamma-globin upstream-beta-globin hybrid gene resulted in a 25-fold reduction in expression in embryonic blood cells. This suggests that the beta-globin 3' enhancer is potentially active at the embryonic stage and thus cannot be solely responsible for the fetal or adult specificity of the beta-globin gene.  相似文献   

20.
We found an enhancer element placed at the 3' side of the adult duck alpha A globin gene. The duck alpha globin gene cluster contains three genes from the 5' to 3' side: the pi embryonic gene, the alpha D minor adult gene and the alpha A adult major gene. We analyzed a 16 kb genomic domain extending from 2 kb upstream of the pi gene to 5 kb downstream of the alpha A gene. This enhancer is active in AEV transformed chicken erythroblasts. Its is inactive both in HeLa cells and in the human erythroid cells K562 which express only embryonic genes. These findings are discussed in relation to previous results concerning the duck beta globin enhancer located at the 3' side of the beta A globin gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号