首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Rapid diagnosis and correct treatment of cases are the main objectives of control programs in malaria-endemic areas.

Methods and results

To evaluate these criteria and in a comparative study, blood specimens were collected from 120 volunteers seeking care at the Malaria Health Center in Chahbahar district. One hundred and seven out of 120 Giemsa-stained slides were positive for malaria parasites by microscopy. Eighty-four (70%) and 20 (16.7%) were identified as having only Plasmodium vivax and Plasmodium falciparum infections, respectively, while only 3 (2.5%) were interpreted as having mixed P. vivax-P. falciparum infections. The target DNA sequence of the 18S small sub-unit ribosomal RNA (ssrRNA) gene was amplified by Polymerase Chain Reaction (PCR) and used for the diagnosis of malaria in south-eastern Iran. One hundred twenty blood samples were submitted and the results were compared to those of routine microscopy. The sensitivity of PCR for detection of P. vivax and P. falciparum malaria was higher than that of microscopy: nested PCR detected 31 more mixed infections than microscopy and parasite positive reactions in 9 out of the 13 microscopically negative samples. The results also confirmed the presence of P. vivax and P. falciparum.

Conclusions

These results suggest that, in places where transmission of both P. vivax and P. falciparum occurs, nested PCR detection of malaria parasites can be a very useful complement to microscopical diagnosis.  相似文献   

3.
4.

Background

Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed.

Methods

Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index.

Results

Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions.

Conclusion

Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses.  相似文献   

5.

Background

Plasmodium vivax is the second most prevalent malaria parasite affecting more than 75 million people each year, mostly in South America and Asia. In addition to major morbidity this parasite is associated with relapses and a reduction in birthweight. The emergence and spread of drug resistance in Plasmodium falciparum is a major factor in the resurgence of this parasite. P. vivax resistance to drugs has more recently emerged and monitoring the situation would be helped, as for P. falciparum, by molecular methods that can be used to characterize parasites in field studies and drug efficacy trials.

Methods

Practical PCR genotyping protocols based on polymorphic loci present in two P. vivax genetic markers, Pvcs and Pvmsp1, were developed. The methodology was evaluated using 100 P. vivax isolates collected in Thailand.

Results and Discussion

Analysis revealed that P. vivax populations in Thailand are highly diverse genetically, with mixed genotype infections found in 26 % of the samples (average multiplicity of infection = 1.29). A large number of distinguishable alleles were found for the two markers, 23 for Pvcs and 36 for Pvmsp1. These were generally randomly distributed amongst the isolates. A total of 68 distinct genotypes could be enumerated in the 74 isolates with a multiplicity of infection of 1.

Conclusion

These results indicate that the genotyping protocols presented can be useful in the assessment of in vivo drug efficacy clinical trials conducted in endemic areas and for epidemiological studies of P. vivax infections.  相似文献   

6.

Background

The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity.

Results

We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1.

Conclusions

The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.  相似文献   

7.

Background

Herpes simplex type II (HSV-2) is a member of the family herpesviridae. Human infection with this double stranded linear DNA virus causes genital ulcerative disease and existing treatment options only serve to resolve the symptomatology (ulcers) associated with active HSV-2 infection but do not eliminate latent virus. As a result, infection with HSV-2 follows a life-long relapsing (active versus latent) course. On the basis of a primitive bacterium anti-phage DNA defense, the restriction modification (R-M) system, we previously identified the Escherichia coli restriction enzyme (REase) EcoRII as a novel peptide to excise or irreversibly disrupt latent HSV-2 DNA from infected cells. However, sequences of the site specificity palindrome of EcoRII 5'-CCWGG-3' (W = A or T) are equally present within the human genome and are a potential source of host-genome toxicity. This feature has limited previous HSV-2 EcoRII based therapeutic models to microbicides only, and highlights the need to engineer artificial REases (zinc finger nucleases-ZFNs) with specificity to HSV-2 genomic-DNA only. Herein, the therapeutic-potential of zinc finger arrays (ZFAs) and ZFNs is identified and modeled, with unique specificity to the HSV-2 genome.

Methods and results

Using the whole genome of HSV-2 strain HG52 (Dolan A et al.,), and with the ZFN-consortium's CoDA-ZiFiT software pre-set at default, more than 28,000 ZFAs with specificity to HSV-2 DNA were identified. Using computational assembly (through in-silico linkage to the Flavobacterium okeanokoites endonuclease Fok I of the type IIS class), 684 ZFNs with specificity to the HSV-2 genome, were constructed. Graphic-analysis of the HSV-2 genome-cleavage pattern using the afore-identified ZFNs revealed that the highest cleavage-incidence occurred within the 30,950 base-pairs (~between the genomic context coordinates 0.80 and 1.00) at the 3' end of the HSV-2 genome. At approximately 3,095 bp before and after the 5' and 3' ends of the HSV-2 genome (genomic context coordinates 0.02 and 0.98, respectively) were specificity sites of ZFNs suited for the complete excision of over 60% of HSV-2 genomic material from within infected human cells, through the process of non-homologous end joining (NHEJ). Furthermore, a model concerning a recombinant (ICP10-PK mutant) replication competent HSV-2 viral vector for delivering and transducing a diploid copy (or pair) of the HSV-2-genome-specific ZFN genotype within neuronal tissue, is presented.

Conclusion

ZFNs with specificity to HSV-2 genomic DNA that are precursors of novel host-genome expressed HSV-2 gene-therapeutics or vaccines were identified.  相似文献   

8.

Background

Although the numbers of malaria cases in China have been declining in recent years, outbreaks of Plasmodium vivax malaria were still being reported in rural areas south of the Yellow River. To better understand the transmission dynamics of P. vivax parasites in China, the extent of genetic diversity of P. vivax populations circulating in Bozhou of Anhui province of China were investigated using three polymorphic genetic markers: merozoite surface proteins 1 and 3α (pvmsp-1 and pvmsp-3α) and circumsporozoite protein (pvcsp).

Methods

Forty-five P. vivax clinical isolates from Bouzhou of Anhui province were collected from 2009 to 2010 and were analysed using PCR/RFLP or DNA sequencing.

Results

Seven and six distinct allelic variants were identified using PCR/RFLP analysis of pvmsp-3α with HhaI and AluI, respectively. DNA sequence analysis of pvmsp-1 (variable block 5) revealed that there were Sal-I and recombinant types but not Belem type, and seven distinct allelic variants in pvmsp-1 were detected, with recombinant subtype 2 (R2) being predominant (66.7%). All the isolates carried pvcsp with VK210 type but not VK247 or P. vivax-like types in the samples. Sequence analysis of pvcsp gene revealed 12 distinct allelic variants, with VK210-1 being predominant (41.5%).

Conclusions

The present data indicate that there is some degree of genetic diversity among P. vivax populations in Anhui province of China. The genetic data obtained may assist in the surveillance of P. vivax infection in endemic areas or in tracking potential future disease outbreak.  相似文献   

9.
10.

Background

Endemic northern malaria reached 68°N latitude in Europe during the 19th century, where the summer mean temperature only irregularly exceeded 16°C, the lower limit needed for sporogony of Plasmodium vivax. Because of the available historical material and little use of quinine, Finland was suitable for an analysis of endemic malaria and temperature.

Methods

Annual malaria death frequencies during 1800–1870 extracted from parish records were analysed against long-term temperature records in Finland, Russia and Sweden. Supporting data from 1750–1799 were used in the interpretation of the results. The life cycle and behaviour of the anopheline mosquitoes were interpreted according to the literature.

Results

Malaria frequencies correlated strongly with the mean temperature of June and July of the preceding summer, corresponding to larval development of the vector. Hatching of imagoes peaks in the middle of August, when the temperature most years is too low for the sporogony of Plasmodium. After mating some of the females hibernate in human dwellings. If the female gets gametocytes from infective humans, the development of Plasmodium can only continue indoors, in heated buildings.

Conclusion

Northern malaria existed in a cold climate by means of summer dormancy of hypnozoites in humans and indoor transmission of sporozoites throughout the winter by semiactive hibernating mosquitoes. Variable climatic conditions did not affect this relationship. The epidemics, however, were regulated by the population size of the mosquitoes which, in turn, ultimately was controlled by the temperatures of the preceding summer.  相似文献   

11.
12.

Background

Resistance to anti-malarial drugs hampers control efforts and increases the risk of morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria was assessed in Chumkiri, Kampot Province, Cambodia.

Methods

One hundred fifty-one subjects with uncomplicated falciparum malaria received directly observed therapy with 12 mg/kg artesunate (over three days) and 25 mg/kg mefloquine, up to a maximum dose of 600 mg artesunate/1,000 mg mefloquine. One hundred nine subjects with uncomplicated vivax malaria received a total of 25 mg/kg chloroquine, up to a maximum dose of 1,500 mg, over three days. Subjects were followed for 42 days or until recurrent parasitaemia was observed. For P. falciparum infected subjects, PCR genotyping of msp1, msp2, and glurp was used to distinguish treatment failures from new infections. Treatment failure rates at days 28 and 42 were analyzed using both per protocol and Kaplan-Meier survival analysis. Real Time PCR was used to measure the copy number of the pfmdr1 gene and standard 48-hour isotopic hypoxanthine incorporation assays were used to measure IC50 for anti-malarial drugs.

Results

Among P. falciparum infected subjects, 47.0% were still parasitemic on day 2 and 11.3% on day 3. The PCR corrected treatment failure rates determined by survival analysis at 28 and 42 days were 13.1% and 18.8%, respectively. Treatment failure was associated with increased pfmdr1 copy number, higher initial parasitaemia, higher mefloquine IC50, and longer time to parasite clearance. One P. falciparum isolate, from a treatment failure, had markedly elevated IC50 for both mefloquine (130 nM) and artesunate (6.7 nM). Among P. vivax infected subjects, 42.1% suffered recurrent P. vivax parasitaemia. None acquired new P. falciparum infection.

Conclusion

The results suggest that artesunate-mefloquine combination therapy is beginning to fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC50 suggest that artesunate resistance may be emerging on a background of mefloquine resistance.  相似文献   

13.

Background

Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this deficiency.

Methodology/Principal Findings

A systematic search of PubMed was conducted, and results of both light microscopy (LM) and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%, constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax. Amongst clinical malaria suspects, however, SM P. vivax was not identified.

Conclusions/Significance

SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs to estimate the prevalence and proportion of SM P. vivax infections in their settings, and develop appropriate elimination strategies to tackle SM P. vivax to interrupt transmission.  相似文献   

14.

Background

There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections.

Methods

Passive case-detection (PCD) during the malaria season (February-July) and an active case-detection (ACD) community-wide survey (March) surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD) occurred within at-risk zones, where 137 houses (573 persons) were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses.

Results

The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones.

Conclusion

Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior.  相似文献   

15.

Background

Several studies have shown a prolonged or increased susceptibility to malaria in the post-partum period. A matched cohort study was conducted to evaluate prospectively the susceptibility to malaria of post-partum women in an area where P.falciparum and P.vivax are prevalent.

Methods

In an area of low seasonal malaria transmission on the Thai-Myanmar border pregnant women attending antenatal clinics were matched to a non-pregnant, non-post-partum control and followed up prospectively until 12 weeks after delivery.

Results

Post-partum women (n = 744) experienced significantly less P.falciparum episodes than controls (hazard ratio (HR) 0.39 (95%CI 0.21–0.72) p = 0.003) but significantly more P.vivax (HR 1.34 (1.05–1.72) p = 0.018). The reduced risk of falciparum malaria was accounted for by reduced exposure, whereas a history of P.vivax infection during pregnancy was a strong risk factor for P.vivax in post-partum women (HR 13.98 (9.13–21.41), p<0.001). After controlling for effect modification by history of P.vivax, post-partum women were not more susceptible to P.vivax than controls (HR: 0.33 (0.21–0.51), p<0.001). Genotyping of pre-and post-partum infections (n⊕ = ⊕10) showed that each post-partum P.falciparum was a newly acquired infection.

Conclusions

In this area of low seasonal malaria transmission post-partum women were less likely to develop falciparum malaria but more likely to develop vivax malaria than controls. This was explained by reduced risk of exposure and increased risk of relapse, respectively. There was no evidence for altered susceptibility to malaria in the post-partum period. The treatment of vivax malaria during and immediately after pregnancy needs to be improved.  相似文献   

16.

Background

New frontier settlements across the Amazon Basin pose a major challenge for malaria elimination in Brazil. Here we describe the epidemiology of malaria during the early phases of occupation of farming settlements in Remansinho area, Brazilian Amazonia. We examine the relative contribution of low-density and asymptomatic parasitemias to the overall Plasmodium vivax burden over a period of declining transmission and discuss potential hurdles for malaria elimination in Remansinho and similar settings.

Methods

Eight community-wide cross-sectional surveys, involving 584 subjects, were carried out in Remansinho over 3 years and complemented by active and passive surveillance of febrile illnesses between the surveys. We used quantitative PCR to detect low-density asexual parasitemias and gametocytemias missed by conventional microscopy. Mixed-effects multiple logistic regression models were used to characterize independent risk factors for P. vivax infection and disease.

Principal Findings/Conclusions

P. vivax prevalence decreased from 23.8% (March–April 2010) to 3.0% (April–May 2013), with no P. falciparum infections diagnosed after March–April 2011. Although migrants from malaria-free areas were at increased risk of malaria, their odds of having P. vivax infection and disease decreased by 2–3% with each year of residence in Amazonia. Several findings indicate that low-density and asymptomatic P. vivax parasitemias may complicate residual malaria elimination in Remansinho: (a) the proportion of subpatent infections (i.e. missed by microscopy) increased from 43.8% to 73.1% as P. vivax transmission declined; (b) most (56.6%) P. vivax infections were asymptomatic and 32.8% of them were both subpatent and asymptomatic; (c) asymptomatic parasite carriers accounted for 54.4% of the total P. vivax biomass in the host population; (d) over 90% subpatent and asymptomatic P. vivax had PCR-detectable gametocytemias; and (e) few (17.0%) asymptomatic and subpatent P. vivax infections that were left untreated progressed to clinical disease over 6 weeks of follow-up and became detectable by routine malaria surveillance.  相似文献   

17.
Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible. However, most current strategies for developing zinc finger nucleases with customized sequence specificities require the construction of numerous tandem arrays of zinc finger proteins (ZFPs), and subsequent largescale in vitro validation of their DNA binding affinities and specificities via bacterial selection. The labor and expertise required in this complex process limits the broad adoption of ZFN technology. An effective computational assisted design strategy will lower the complexity of the production of a pair of functional ZFNs. Here we used the FoldX force field to build 3D models of 420 ZFP-DNA complexes based on zinc finger arrays developed by the Zinc Finger Consortium using OPEN (oligomerized pool engineering). Using nonlinear and linear regression analysis, we found that the calculated protein-DNA binding energy in a modeled ZFP-DNA complex strongly correlates to the failure rate of the zinc finger array to show significant ZFN activity in human cells. In our models, less than 5% of the three-finger arrays with calculated protein-DNA binding energies lower than −13.132 kcal mol−1 fail to form active ZFNs in human cells. By contrast, for arrays with calculated protein-DNA binding energies higher than −5 kcal mol−1, as many as 40% lacked ZFN activity in human cells. Therefore, we suggest that the FoldX force field can be useful in reducing the failure rate and increasing efficiency in the design of ZFNs.  相似文献   

18.

Background

To document the status of imported malaria infections and estimate the costs of treating of patients hospitalized with the diagnosis of imported malaria in the Slovak Republic during 2003 to 2008.

Case study

Calculating and comparing the direct and indirect costs of treatment of patients diagnosed with imported malaria (ICD-10: B50 - B54) who used and not used chemoprophylaxis. The target sample included 19 patients diagnosed with imported malaria from 2003 to 2008, with 11 whose treatment did not include chemoprophylaxis and eight whose treatment did.

Results

The mean direct cost of malaria treatment for patients without chemoprophylaxis was 1,776.0 EUR, and the mean indirect cost 524.2 EUR. In patients with chemoprophylaxis the mean direct cost was 405.6 EUR, and the mean indirect cost 257.4 EUR.

Conclusions

The analysis confirmed statistically-significant differences between the direct and indirect costs of treatment with and without chemoprophylaxis for patients with imported malaria.  相似文献   

19.

Background

There is a growing body of evidence linking micronutrient deficiencies and malaria incidence arising mostly from P. falciparum endemic areas. We assessed the impact of micronutrient deficiencies on malaria incidence and vice versa in the Brazilian state of Amazonas.

Methodology/Principal Findings

We evaluated children <10 years old living in rural communities in the state of Amazonas, Brazil, from May 2010 to May 2011. All children were assessed for sociodemographic, anthropometric and laboratory parameters, including vitamin A, beta-carotene, zinc and iron serum levels at the beginning of the study (May 2010) and one year later (May 2011). Children were followed in between using passive surveillance for detection of symptomatic malaria. Those living in the study area at the completion of the observation period were reassessed for micronutrient levels. Univariate Cox-proportional Hazards models were used to assess whether micronutrient deficiencies had an impact on time to first P. vivax malaria episode. We included 95 children median age 4.8 years (interquartile range [IQR]: 2.3–6.6), mostly males (60.0%) and with high maternal illiteracy (72.6%). Vitamin A deficiencies were found in 36% of children, beta-carotene deficiency in 63%, zinc deficiency in 61% and iron deficiency in 51%. Most children (80%) had at least one intestinal parasite. During follow-up, 16 cases of vivax malaria were diagnosed amongst 13 individuals. Micronutrient deficiencies were not associated with increased malaria incidence: vitamin A deficiency [Hazard ratio (HR): 1.51; P-value: 0.45]; beta-carotene [HR: 0.47; P-value: 0.19]; zinc [HR: 1.41; P-value: 0.57] and iron [HR: 2.31; P-value: 0.16]). Upon reevaluation, children with al least one episode of malaria did not present significant changes in micronutrient levels.

Conclusion

Micronutrient serum levels were not associated with a higher malaria incidence nor the malaria episode influenced micronutrient levels. Future studies targeting larger populations to assess micronutrients levels in P. vivax endemic areas are warranted in order to validate these results.  相似文献   

20.
1H-Pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylic acid (6a) and its 1-methyl (6b) and 1-benzyl (6c) derivatives were synthesized. 3-(5-Methoxycarbonyl-4H-furo[3,2-b]-pyrrole-2-yl)propenoic acid (1) was converted to the corresponding azide 2, which in turn was cyclized to give 3 by heating in diphenylether. The pyridone 3 obtained was aromatized with phosphorus oxychloride, then reduced with zinc in acetic acid to give methyl 1H-pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylate (5), which by hydrolysis gave the corresponding carboxylic acid 6a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号