首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stretching DNA and RNA to probe their interactions with proteins   总被引:7,自引:0,他引:7  
When interacting with a single stretched DNA, many proteins modify its end-to-end distance. This distance can be monitored in real time using various micromanipulation techniques that were initially used to determine the elastic properties of bare nucleic acids and their mechanically induced structural transitions. These methods are currently being applied to the study of DNA enzymes such as DNA and RNA polymerases, topoisomerases and structural proteins such as RecA. They permit the measurement of the probability distributions of the rate, processivity, on-time, affinity and efficiency for a large variety of DNA-based molecular motors.  相似文献   

2.
The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 104 L mol?1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure ?20.61 KJ mol?1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.  相似文献   

3.
Genomes,proteomes, and dynamic networks in the cell nucleus   总被引:9,自引:6,他引:3  
  相似文献   

4.
Type II DNA restriction and modification systems are ideally suited for analysis of mechanisms by which proteins specifically recognize unique DNA sequences. Each system is comprised of a unique DNA recognition site and two enzymes, which in those cases examined in detail, are comprised of distinct polypeptide chains. Thus, not only are the DNA substrates extremely well defined, but each system affords the opportunity to compare distinct proteins which interact with a common DNA sequence. This review will focus only on those Type II systems which have been examined in sufficient molecular detail to permit some insight into modes of specific DNA-protein interaction.  相似文献   

5.
The study of systems genetics is changing the way the genetic and molecular basis of phenotypic variation, such as disease susceptibility and drug response, is being analyzed. Moreover, systems genetics aids in the translation of insights from systems biology into genetics. The use of systems genetics enables greater attention to be focused on the potential impact of genetic perturbations on the molecular states of networks that in turn affects complex traits. In this study, we developed models to detect allele-specific perturbations on interactions, in which a genetic locus with alternative alleles exerted a differing influence on an interaction. We utilized the models to investigate the dynamic behavior of an integrated molecular network undergoing genetic perturbations in yeast. Our results revealed the complexity of regulatory relationships between genetic loci and networks, in which different genetic loci perturb specific network modules. In addition, significant within-module functional coherence was found. We then used the network perturbation model to elucidate the underlying molecular mechanisms of individual differences in response to 100 diverse small molecule drugs. As a result, we identified sub-networks in the integrated network that responded to variations in DNA associated with response to diverse compounds and were significantly enriched for known drug targets. Literature mining results provided strong independent evidence for the effectiveness of these genetic perturbing networks in the elucidation of small-molecule responses in yeast.  相似文献   

6.
7.
DNA sequence recognition by bispyrazinonaphthalimides antitumor agents   总被引:4,自引:0,他引:4  
Bifunctional DNA intercalating agents have long attracted considerable attention as anticancer agents. One of the lead compounds in this category is the dimeric antitumor drug elinafide, composed of two tricyclic naphthalimide chromophores separated by an aminoalkyl linker chain optimally designed to permit bisintercalation of the drug into DNA. In an effort to optimize the DNA recognition capacity, different series of elinafide analogues have been prepared by extending the surface of the planar drug chromophore which is important for DNA sequence recognition. We report here a detailed investigation of the DNA sequence preference of three tetracyclic monomeric or dimeric pyrazinonaphthalimide derivatives. Melting temperature measurements and surface plasmon resonance (SPR) studies indicate that the dimerization of the tetracyclic planar chromophore considerably augments the affinity of the drug for DNA, polynucleotides, or hairpin oligonucleotides and promotes selective interaction with G.C sites. The (CH(2))(2)NH(CH(2))(3)NH(CH(2))(2) connector stabilizes the drug-DNA complexes. The methylation of the two nitrogen atoms of this linker chain reduces the binding affinity and increases the dissociation rates of the drug-DNA complexes by a factor of 10. DNase I footprinting experiments were used to investigate the sequence selectivity of the drugs, demonstrating highly preferential binding to G.C-rich sequences. It also served to select a high-affinity site encompassing the sequence 5'-GACGGCCAG which was then introduced into a biotin-labeled hairpin oligonucleotide to accurately measure the binding parameters by SPR. The affinity constant of the unmethylated dimer for this sequence is 500 times higher than that of the monomer compound and approximately 10 times higher than that of the methylated dimer. The DNA groove accessibility was also probed with three related oligonucleotides carrying G --> c(7)G, G --> I, and C --> M substitutions. The level of drug binding to the two hairpin oligonucleotides containing 7-deazaguanine (c(7)G) or 5-methylcytosine (M) residues is unchanged or only slightly reduced compared to that of the unmodified target. In contrast, incorporation of inosine (I) residues considerably decreases the extent of drug binding or even abolishes the interaction as is the case with the monomer. The pyrazinonaphthalimide derivatives are thus much more sensitive to the deletion of the exocyclic guanine 2-amino group exposed in the minor groove of the duplex than to the modification of the major groove elements. The complementary SPR footprinting methodology combining site selection and quantitative DNA affinity analysis constitutes a reliable method for dissecting the DNA sequence selectivity profile of reversible DNA binding small molecules.  相似文献   

8.
9.
The luzopeptin antibiotics contain a cyclic decadepsipeptide to which are attached two quinoline chromophores that bisintercalate into DNA. Although they bind DNA less tightly than the structurally related quinoxaline antibiotics echinomycin and triostin A, the molecular basis of their interaction remains unclear. We have used the PCR in conjunction with novel nucleotides to create specifically modified DNA for footprinting experiments. In order to study the influence that removal, addition or relocation of the guanine 2-amino group, which normally identifies G.C base pairs from the minor groove, has on the interaction of luzopeptin antibiotics with DNA. The presence of a purine 2-amino group is not strictly required for binding of luzopeptin to DNA, but the exact location of this group can alter the position of preferred drug binding sites. It is, however, not the sole determinant of nucleotide sequence recognition in luzopeptin-DNA interaction. Nor can the selectivity of luzopeptin be attributed to the quinoline chromophores, suggesting that an analogue mode of DNA recognition may be operative. This is in contrast to the digital readout that seems to predominate with the quinoxaline antibiotics.  相似文献   

10.
Abstract

The luzopeptin antibiotics contain a cyclic decadepsipeptide to which are attached two quinoline chromophores that bisintercalate into DNA. Although they bind DNA less tightly than the structurally related quinoxaline antibiotics echinomycin and triostin A, the molecular basis of their interaction remains unclear. We have used the PCR in conjunction with novel nucleotides to create specifically modified DNA for footprinting experiments. In order to study the influence that removal, addition or relocation of the guanine 2-amino group, which normally identifies G. C base pairs from the minor groove, has on the interaction of luzopeptin antibiotics with DNA. The presence of a purine 2-amino group is not strictly required for binding of luzopeptin to DNA, but the exact location of this group can alter the position of preferred drug binding sites. It is, however, not the sole determinant of nucleotide sequence recognition in luzopeptin-DNA interaction. Nor can the selectivity of luzopeptin be attributed to the quinoline chromophores, suggesting that an analogue mode of DNA recognition may be operative. This is in contrast to the digital readout that seems to predominate with the quinoxaline antibiotics.  相似文献   

11.
Summary We reviewed the concept of homology, which can broadly be defined as a correspondence between characteristics that is caused by continuity of information (Van Valen 1982). The concept applies widely in molecular biology when correspondence is taken to mean a genetic relationship resulting from a unique heritable modification of a feature at some previous point in time. Such correspodence can be established for features within a single organism as well as between organisms, making paralogy a valid form of molecular homology under this definition. Molecular homology can be recognized at a variety of organizational levels, which are intedependent. For example, the recognition of homology at the site level involves a statement of homology at the sequence level, and vice versa. This hierarchy, the potential for nonhomologous identity at the site level, and such processes as sequence transposition combine to yield a molecular equivalent to complex structural homology at the anatomical level. As a result, statements of homology between heritable units can involve a valid sense of percent homology.We analyzed DNA hybridization with respect to the problems of recognizing homology and using it in phylogenetic inference. Under a model requiring continuous divergence among compared sequences, DNA hybridization distances embed evolutionary hierarchy, and groups inferred using pairwise methods of tree reconstruction are based on underlying patterns of apomorphic homology. Thus, symplesiomorphic homology will not confound DNA hybridization phylogenies. However, nonhomologous identities that act like apomorphic homologies can lead to inaccurate reconstructions. The main difference between methods of phylogenetic analysis of DNA sequences is that parsimony methods permit hypotheses of nonhomology, whereas distance methods do not.This article was presented at the C.S.E.O.L. Conference on DNA-DNA Hybridization and Evolution, Lake Arrowhead, California, May 11–14, 1989  相似文献   

12.
Mithramycin(MTR, structure shown in Figure 1) [and the related compound Chromomycin A3(CHRA3)] are antitumor antibiotics which inhibit DNA dependent RNA polymerase activity via reversible interaction with DNA only in the presence of divalent metal ion such as Mg++. In order to understand the role of Mg++ in MTR-DNA interaction, absorbance and CD spectroscopic techniques are employed to study the binding of MTR to Mg++. These studies show: i) the drug alone binds to Mg++ and ii) two different types of drug-Mg++ complexes are formed at low(Complex I) and high(Complex II) ratios of the concentration of Mg++ and MTR. We propose that these two complexes would bind to the same DNA with different affinities and rates. This result suggests that the relative concentration of Mg++ is an important factor to be taken into account to understand the molecular basis of MTR-DNA interaction.  相似文献   

13.
染色质免疫沉淀技术在研究DNA与蛋白质相互作用中的应用   总被引:1,自引:0,他引:1  
王春雨  石建党  朱彦  张琚 《遗传》2005,27(5):801-807
在后基因组时代,DNA-蛋白质的相互作用是研究基因表达调控的一个重要领域。与其他方法相比,染色质免疫沉淀技术(chromatin immunoprecipitation assay, ChIP)是一种在体内研究DNA-蛋白质相互作用的理想的方法。近年来这种方法与DNA芯片和分子克隆技术相结合,可用于高通量的筛选已知蛋白因子的未知DNA靶点和研究反式作用因子在整个基因组上的分布情况,这将有助于深入理解DNA-蛋白质相互作用的调控网络。总结了染色质免疫沉淀技术的方法,特别介绍了使用这些方法取得的最新进展。  相似文献   

14.
AZT-DNA interaction   总被引:3,自引:0,他引:3  
  相似文献   

15.
We have previously noted that the Physicians' Desk Reference (PDR) contains over 80 instances in which a drug elicited a positive genotoxic response in one or more in vitro assays, despite having no obvious structural features predictive of covalent drug/DNA interactive potential or known mechanistic basis. Furthermore, in most cases, these drugs were "missed" by computational genotoxicity-predicting models such as DEREK, MCASE and TOPKAT. We have previously reported the application of a V79 cell-based model and a 3D DNA docking model for predicting non-covalent chemical/DNA interactions. Those studies suggested that molecules that are very widely structurally diverse may be capable of intercalating into DNA. To determine whether such non-covalent drug/DNA interactions might be involved in unexpected drug genotoxicity, we evaluated, using both models where possible, 56 marketed pharmaceuticals, 40 of which were reported as being clastogenic in in vitro cytogenetics assays (chromosome aberrations/mouse lymphoma assay). As seen before, the two approaches showed good concordance (62%) and 26 of the 40 (65%) drugs exhibiting in vitro clastogenicity were predicted as intercalators by one or both methods. This finding provides support for the hypothesis that non-covalent DNA interaction may be a common mechanism of clastogenicity for many drugs having no obvious structural alerts for covalent DNA interaction.  相似文献   

16.
The recently proposed concept of molecular connectivity maps enables researchers to integrate experimental measurements of genes, proteins, metabolites, and drug compounds under similar biological conditions. The study of these maps provides opportunities for future toxicogenomics and drug discovery applications. We developed a computational framework to build disease-specific drug-protein connectivity maps. We integrated gene/protein and drug connectivity information based on protein interaction networks and literature mining, without requiring gene expression profile information derived from drug perturbation experiments on disease samples. We described the development and application of this computational framework using Alzheimer''s Disease (AD) as a primary example in three steps. First, molecular interaction networks were incorporated to reduce bias and improve relevance of AD seed proteins. Second, PubMed abstracts were used to retrieve enriched drug terms that are indirectly associated with AD through molecular mechanistic studies. Third and lastly, a comprehensive AD connectivity map was created by relating enriched drugs and related proteins in literature. We showed that this molecular connectivity map development approach outperformed both curated drug target databases and conventional information retrieval systems. Our initial explorations of the AD connectivity map yielded a new hypothesis that diltiazem and quinidine may be investigated as candidate drugs for AD treatment. Molecular connectivity maps derived computationally can help study molecular signature differences between different classes of drugs in specific disease contexts. To achieve overall good data coverage and quality, a series of statistical methods have been developed to overcome high levels of data noise in biological networks and literature mining results. Further development of computational molecular connectivity maps to cover major disease areas will likely set up a new model for drug development, in which therapeutic/toxicological profiles of candidate drugs can be checked computationally before costly clinical trials begin.  相似文献   

17.
Although the molecular mechanism and thermodynamic profile of a wide variety of chemical agents have been examined intensively in the past decades in terms of specific recognition of their protein receptors, to date the physicochemical nature of DNA–drug recognition and association still remains largely unexplored. The present study focused on understanding the structural basis, energetic landscape, and biological implications underlying the binding of small-molecule ligands to their cognate or non-cognate DNA receptors. First, a new method to capture the structural features of DNA–drug complex architecture was proposed and then used to correlate the extracted features with binding affinity of the complexes. By employing this method, a statistical regression-based predictor was developed to quantitatively evaluate the interaction potency of drug compounds with DNA in a fast and reliable manner. Subsequently, we use the predictor to examine the binding behavior of a number of structure-available, affinity-known DNA–drug complexes as well as a large pool of randomly generated DNA decoys in complex with the same drugs. It was found that (1) as compared with protein–DNA recognition, small-molecule agents have relatively low specificity in selecting their cognate DNA targets from the background of numerous random decoys; (2) the abundance of A–T base pairs in the DNA core motif exhibits a significant positive correlation with the affinity of drug ligand binding to the DNA receptor; and (3) high affinity seems not to be closely related to high selectivity for a DNA-targeting drug, although high-affinity drug entities have a greater possibility of being ranked computationally as top binders. We hope that this work will provide a preliminary insight into the molecular origin of sequence-specific interactions in DNA–drug recognition.
Figure
QSAR modeling procedure used to associate structural features with binding affinity of DNA–drug complexes  相似文献   

18.
The mechanism of DNA compaction by dendrimers is key to the design of nanotechnologies that can deliver genetic material into cells. We present atomistic simulations, mesoscopic modeling and single-molecule pulling experiments describing DNA dendrimer interactions. All-atom molecular dynamics were used to characterize pulling-force-dependent interactions between DNA and generation-3 PAMAM amine-terminated dendrimers, and a free energy profile and mean forces along the interaction coordinate are calculated. The energy, force, and geometry parameters computed at the atomic level are input for a Monte Carlo model yielding mesoscopic force-extension curves. Actual experimental single-molecule curves obtained with optical tweezers are also presented, and they show remarkable agreement with the virtual curves from our model. The calculations reveal the microscopic origin of the hysteresis observed in the phase transition underlying compaction. A broad range of ionic and pulling parameters is sampled, and suggestions for windows of conditions to probe new single-molecule behavior are made.  相似文献   

19.
20.
By the methods of heat denaturation and luminescence the interaction between an antitumor drug prospidine and DNA in aqueous solutions at two ionic strengths (0.1 and 0.001 M NaCl) and at various prospidine concentrations was studied. For the first time it has been demonstrated that the interaction occurs at 0.1 M NaCl and therapeutic prospidine concentrations. In the framework of Frank-Kamenetsky's theory of melting of a polymer with stabilizing ligands the size of the binding site and binding constants (K) with the decrease of ionic strength, the lack of alterations in the DNA UV absorption spectrum on complex formation and the data on the competitive binding of ethydium bromide suggest that at the first stage of the reaction an external complex is formed due to electrostatic interactions between quaternary nitrogen atoms of prospidine and DNA phosphate groups. Incubation of the complex at 37 0 C leads to a decrease of the DNA melting temperature and hyperchromic effect. Presumably this is due to the relatively slow formation of chemical bonds between alkylating groups of prospidine and nucleophilic groups of DNA bases, which results in the destabilization and denaturation of DNA. It is concluded that the interaction between prospidine and DNA must be taken into consideration when studying the molecular mechanism of prospidine antitumour activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号