首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dehydrins (DHNs) play vital roles in response to dehydration stress in plants. To examine the contribution of EjDHN to low-temperature stress in loquat (Eriobotrya japonica Lindl.), EjDHN1 was overexpressed in tobacco (Nicotiana tabacum L.). The plant growth of transgenic lines was significantly better than wild type (WT) after 4 d of recovery from cold stress. Cold stress led to membrane lipid peroxidation and reduced photosystem II (PSII) activity in leaves, and these were less severe in transgenic lines. To examine oxidative stress tolerance, the plants were treated with different concentrations of methyl viologen (MV), which inhibited plant growth both in WT and transgenic lines. After exposure to 2.0 μM MV for 10 d, the WT plants had a dramatically lower survival rate. MV treatment in leaf disks confirmed that transgenic lines accumulated less reactive oxygen species (ROS) and suffered less lipid peroxidation. The results suggested that the tolerance of the transgenic plants to cold was increased, and EjDHN1 could protect cells against oxidative damage caused by ROS production under cold stress. It also provided evidences that the enhanced cold tolerance resulted from EjDHN1 overexpression could be partly due to their protective effect on membranes by alleviating oxidative stresses.  相似文献   

2.
Havaux M  Lütz C  Grimm B 《Plant physiology》2003,132(1):300-310
The phototolerance of three chlP transgenic tobacco (Nicotiana tabacum) lines, affected in geranylgeranyl reductase and, hence, deficient in tocopherols (vitamin E), was estimated by in vivo luminescence and fluorescence measurements and was compared with that of the wild type (WT). Exposure of leaf discs to high light (1 mmol photon m(-2) s(-1)) and low temperature (10 degrees C) led to a rapid inhibition of photosystem II (PSII) photochemistry that showed little dependence on the tocopherol level. PSII photo-inhibition was followed by lipid peroxidation with a time delay of about 4 h, and this phenomenon was exacerbated in the tocopherol-deficient leaves. A linear correlation was observed in these short-term experiments between resistance to photooxidation and tocopherol content. When whole plants were exposed to the same treatment, PSII was severely photo-inhibited in mature leaves of all genotypes. Lipid peroxidation was also observed in all plants, but it occurred much more rapidly in tocopherol-deficient transgenic plants relative to WT plants. The time at which extensive lipid peroxidation occurred was correlated with the tocopherol content of the leaves. The present results show that tocopherols protect thylakoid membranes against photodestruction through lipid peroxidation. However, tocopherol deficiency was compensated in young, developing leaves that were able to photo-acclimate in the long term and did not suffer from photooxidative damage. Soluble antioxidants (glutathione and ascorbate) did not accumulate in photo-acclimated chlP transgenic leaves relative to WT leaves. In contrast, a selective accumulation of xanthophyll cycle pigments was observed in young transgenic leaves, and this could represent a compensatory mechanism for tocopherol deficiency.  相似文献   

3.
Yang X  Wen X  Gong H  Lu Q  Yang Z  Tang Y  Liang Z  Lu C 《Planta》2007,225(3):719-733
Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to accumulate glycinebetaine was established. The wild type and transgenic plants were exposed to heat treatment (25–50°C) for 4 h in the dark and under growth light intensity (300 μmol m−2 s−1). The analyses of oxygen-evolving activity and chlorophyll fluorescence demonstrated that photosystem II (PSII) in transgenic plants showed higher thermotolerance than in wild type plants in particular when heat stress was performed in the light, suggesting that the accumulation of glycinebetaine leads to increased tolerance to heat-enhanced photoinhibition. This increased tolerance was associated with an improvement on thermostability of the oxygen-evolving complex and the reaction center of PSII. The enhanced tolerance was caused by acceleration of the repair of PSII from heat-enhanced photoinhibition. Under heat stress, there was a significant accumulation of H2O2, O2 and catalytic Fe in wild type plants but this accumulation was much less in transgenic plants. Heat stress significantly decreased the activities of catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase in wild type plants whereas the activities of these enzymes either decreased much less or maintained or even increased in transgenic plants. In addition, heat stress increased the activity of superoxide dismutase in wild type plants but this increase was much greater in transgenic plants. Furthermore, transgenic plants also showed higher content of ascorbate and reduced glutathione than that of wild type plants under heat stress. The results suggest that the increased thermotolerance induced by accumulation of glycinebetaine in vivo was associated with the enhancement of the repair of PSII from heat-enhanced photo inhibition, which might be due to less accumulation of reactive oxygen species in transgenic plants.  相似文献   

4.
In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of pho-tosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransferase (GPA T) gene were used to analyze the lipid composition in thylakoid membrane, the net photosynthetic rate and chlorophyll fluorescence parameters under high temperature stress. The results showed that the saturated extent of monogalactosyldiacylglycerol (MGDG), suifoquinovosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylglycerol in thylakoid membrane of transgenic tobacco T1 lines increased generally. Particularly, the saturated extent in MGDG increased obviously by 16.2% and 12.0% in T1-2 and T1-1, respectively. With stress temperature elevating, the maximum efficiency of photosystem Ⅱ the two lines and wild type tobacco plants decreased gradually, but those parameters decreased much less in transgenic plants. Even though the recovery process appeared differently in the donor and acceptor side of PSII in transgenic tobacco compared with wild-type plants, the entire capability of PSII recovered faster in transgenic tobacco, which was shown in Increase in saturated extent of thylakoid membrane Iipids in transgenic plants enhanced the stability of photosynthetic apparatus under high temperature stress.  相似文献   

5.
A betA gene encoding choline dehydrogenase from Escherichia coli was transformed into cotton (Gossypium hirsutum L.) via Agrobacterium-mediated transformation. Transgenic cotton plants exhibited improved tolerance to chilling due to accumulation of glycinebetaine (GB). The results of our experiment showed that GB contents of leaves of transgenic lines 1, 3, 4, and 5, both before and after chilling stress, were significantly higher than those of wild-type (WT) plants. At 15°C, transgenic lines 1, 3, 4, and 5 exhibited higher germination capacity as determined by the germination speed and final germination percentage and, displayed less inhibition in seedling shoot growth rate than WT plants. Under chilling stress, transgenic lines 4 and 5 maintained higher relative water content, upper carbon dioxide (CO2) fixation capacity and PSII electron transfer rate, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid membrane peroxidation when compared with WT plants. Chilling resistance of the transgenic lines was demonstrated to be positively correlated with GB content under chilling stress. The high levels of GB in transgenic cotton plants might not only protect the integrity of cell membrane from chilling damage, but also be involved in OA which alleviated chilling induced water stress. Moreover, under chilling-stressed conditions, transgenic cotton plants enhanced stomatal conductance, PSII electron transport rate, and further leaf photosynthesis through accumulating high levels of GB.  相似文献   

6.
Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to synthesis glycinebetaine (GB) in chloroplasts was established by introducing the BADH gene for betaine aldehyde dehydrogenase from spinach (Spinacia oleracea L.). The genetic engineering resulted in enhanced tolerance of growth of young seedlings to salt stress. This increased tolerance was not due to improved water status, since there were no significant differences in accumulation of sodium and chloride, leaf water potential, and relative water content between wild type and transgenic plants under salt stress. Salt stress resulted in a decrease in CO2 assimilation and such a decrease was much greater in wild type plants than in transgenic plants. Though salt stress showed no damage to PSII, there were a decrease in the maximal PSII electron transport rate in vivo and an increase in non-photochemical quenching (NPQ) and these changes were greater in wild type plants than in transgenic plants. In addition, salt stress inhibited the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase, chloroplastic fructose-1,6-bisphosphatase, fructose-1,6-bisphosphate aldolase, and phosphoribulokinase and such a decrease was also greater in wild type plants than in transgenic plants, suggesting that GB protects these enzymes against salt stress. However, there were no significant changes in the activities of phosphoglycerate kinase, triose phosphate isomerase, ribulose-5-phosphate isomerase, transketolase, and sedoheptulose-1,7-bisphosphatase in both wild type and transgenic plants. The results in this study suggest that enhanced tolerance of CO2 assimilation to salt stress may be one of physiological bases for increased tolerance of growth of transgenic plants to salt stress.  相似文献   

7.
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2‐overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+/K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2‐regulated salt stress tolerance.  相似文献   

8.
An H(+)-pyrophosphatase (PPase) gene named TsVP involved in basic biochemical and physiological mechanisms was cloned from Thellungiella halophila. The deduced translation product has similar characteristics to H(+)-PPases from other species, such as Arabidopsis and rice, in terms of bioinformation. The heterologous expression of TsVP in the yeast mutant ena1 suppressed Na(+) hypersensitivity and demonstrated the function of TsVP as an H(+)-PPase. Transgenic tobacco overexpressing TsVP had 60% greater dry weight than wild-type tobacco at 300 mM NaCl and higher viability of mesophyll protoplasts under salt shock stress conditions. TsVP and AVP1, another H(+)-PPase from Arabidopsis, were heterologously expressed separately in both the yeast mutant ena1 and tobacco. The salt tolerance of TsVP or AVP1 yeast transformants and transgenic tobacco were improved to almost the same level. The TsVP transgenic tobacco lines TL3 and TL5 with the highest H(+)-PPase hydrolytic activity were studied further. These transgenic tobacco plants accumulated 25% more solutes than wild-type plants without NaCl stress and 20-32% more Na(+) under salt stress conditions. Although transgenic tobacco lines TL3 and TL5 accumulated more Na(+) in leaf tissues, the malondialdehyde content and cell membrane damage were less than those of the wild type under salt stress conditions. Presumably, compartmentalization of Na(+) in vacuoles reduces its toxic effects on plant cells. This result supports the hypothesis that overexpression of H(+)-PPase causes the accumulation of Na(+) in vacuoles instead of in the cytoplasm and avoids the toxicity of excessive Na(+) in plant cells.  相似文献   

9.
Plants may activate similar defence systems to reduce cellular damages caused by different stress conditions. In the present experiments, the formation of lipid peroxidation products [thiobarbituric acid reactive species (TBARS)] was significant during both drought and ultraviolet (UV)‐B stresses, whereas the formation of reactive oxygen species (ROS) was a more delayed response to UV‐B than to drought. H2O2 was detected during both stresses, whereas ·OH radical production was a more characteristic response to drought. The present characterization of transgenic tobacco plants revealed a common role for aldose/aldehyde reductase (ALR) in the detoxification of lipid peroxidation products under water depletion and UV‐B irradiation. As the result of the increased synthesis of ALR enzyme, the transformed plants were more tolerant to both stress conditions, exhibiting reduced loss of photosynthetic function and decreased accumulation of TBARS and H2O2 as compared to control (SR1) plants. When plants had been exposed to mild, non‐lethal drought and were then watered again to recover, they were more tolerant to a subsequent stress by UV‐B. This was characteristic to both transgenic and wild‐type plants. However, this drought‐induced cross‐tolerance to UV‐B stress of SR1 tobacco did not reach the enhancement achieved by the overexpression of ALR.  相似文献   

10.
We examined the function of the rice (Oryza sativa L.) antiporter-regulating protein OsARP by overexpressing it in tobacco (Nicotiana tabacum L.). In public databases, this protein was annotated as a putative Os02g0465900 protein of rice. The OsARP gene was introduced into tobacco under the control of the cauliflower mosaic virus 35S promoter. The transformants were selected for their ability to grow on medium containing kanamycin. Incorporation of the transgene in the genome of tobacco was confirmed by PCR, and its expression was confirmed by Western blot analysis. Transgenic plants had better growth and vigor than non-transgenic plants under salt stress in vitro. Overexpression of OsARP in transgenic tobacco plants resulted in salt tolerance, and the plants had a higher rate of photosynthesis and effective PSII photon yield when compared with the wild type. The OsARP protein was localized in the tonoplast of rice plants. Transgenic plants accumulated more Na+ in their leaf tissue than did wild-type plants. It is conceivable that the toxic effect of Na+ in the cytosol might be reduced by sequestration into vacuoles. The rate of water loss was higher in the wild type than in transgenic plants under salt stress. Increased vacuolar solute accumulation and water retention could confer salt tolerance in transgenic plants. Tonoplast vesicles isolated from OsARP transgenic plants showed Na+/H+ exchange rates 3-fold higher than those of wild-type plants. These results suggest that OsARP on the tonoplasts plays an important role in compartmentation of Na+ into vacuoles. We suggest that OsARP is a new type of protein participating in Na+ uptake in vacuoles.  相似文献   

11.
Glycine betaine (GB) is a compatible solute that accumulates rapidly to enhance heat tolerance in many plants grown under heat stress. In this study, a BADH gene (betaine aldehyde dehydrogenase) from spinach was introduced into tomato (Lycopersicon esculentum cv. ‘Moneymaker’) via Agrobacterium-mediated transformation. Transgenic tomato lines expressing BADH exhibited higher capabilities for GB accumulation. Chlorophyll fluorescence analysis of wild type (WT) and transgenic plants exposed to heat treatment (42 °C) showed that transgenic plants exhibited higher photosynthetic capacities than WT plants. This finding suggests that GB accumulation increases tolerance to heat-enhanced photoinhibition. This increased tolerance was associated with an improvement in D1 protein content, which accelerated the repair of photosystem II (PSII) following heat-enhanced photoinhibition. Significant accumulations of hydrogen peroxide (H2O2) and superoxide radical (O2 ?) were observed in WT plants under heat stress. However, these accumulations were much less for the transgenic plants. An important finding reported herein is that exogenous GB cannot directly reduce the content of reactive oxygen species (ROS). In accordance with a lower relative electrolyte conductivity and malondialdehyde content, the activities of antioxidant enzymes were higher in transgenic lines than in WT plants, indicating that the degree of membrane injury in the transgenic plants was lower compared to the WT plants. These results suggest that GB accumulation in vivo cannot directly eliminate ROS. Rather, higher antioxidant enzyme activities must be maintained to lessen the accumulation of ROS in transgenic plants and to decrease the degree of membrane injury.  相似文献   

12.
Liu X  Hua X  Guo J  Qi D  Wang L  Liu Z  Jin Z  Chen S  Liu G 《Biotechnology letters》2008,30(7):1275-1280
Tocopherol cyclase (VTE1, encoded by VTE1 gene) catalyzes the penultimate step of tocopherol synthesis. Transgenic tobacco plants overexpressing VTE1 from Arabidopsis were exposed to drought conditions during which transgenic lines had decreased lipid peroxidation, electrolyte leakage and H(2)O(2) content, but had increased chlorophyll compared with the wild type. Thus VTE1 can be used to increase vitamin E content of plants and also to enhance tolerance to environmental stresses.  相似文献   

13.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants. The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase over-expressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.  相似文献   

14.
15.
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes ?1-pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na+ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.  相似文献   

16.
Increase of glycinebetaine synthesis improves drought tolerance in cotton   总被引:1,自引:0,他引:1  
The tolerance to drought stress of the homozygous transgenic cotton (Gossypium hirsutum L.) plants with enhanced glycinebetaine (GB) accumulation was investigated at three development stages. Among the five transgenic lines investigated, lines 1, 3, 4, and 5 accumulated significantly higher levels of GB than the wild-type (WT) plants either before or after drought stress, and the transgenic plants were more tolerant to drought stress than the wild-type counterparts from young seedlings to flowering plants. Under drought stress conditions, transgenic lines 1, 3, 4, and 5 had higher relative water content, increased photosynthesis, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid membrane peroxidation than WT plants. The GB levels in transgenic plants were positively correlated with drought tolerance under water stress. The results suggested that GB may not only protect the integrity of the cell membrane from drought stress damage, but also be involved in OA in transgenic cotton plants. Most importantly, the seedcotton yield of transgenic line 4 was significantly greater than that of WT plants after drought stress, which is of great value in cotton production.  相似文献   

17.
18.
H+-ATPase subunit c (VHA-c) is involved in the adaptation to environmental stresses, including salt, drought, and heavy metals. However, it remains unclear whether VHA-c can induce a physiological response related to stress tolerance. To investigate this possibility, we generated transgenic tobacco lines overexpressing a V-ATPase subunit c (LbVHA-c1) gene from Limonium bicolor (Bunge) Kuntze. Compared with wild-type (WT) tobacco, superoxide dismutase (SOD) and peroxidase (POD) activities in the transgenic plants were significantly enhanced under salt stress conditions. The level of malondialdehyde (MDA) in the transgenic plants was significantly lower than that in WT plants grown under salt stress conditions. Moreover, the transgenic plants displayed obviously better growth than the WT plants under salt stress. These results suggest that LbVHA-c1 may confer stress tolerance through enhancing POD and SOD activities, and by protecting membranes from damage by decreasing lipid peroxidation under salt stress.  相似文献   

19.
为了探讨番茄GDP—L-半乳糖磷酸酶对烟草抗坏血酸(AsA)含量及抗氧化能力的影响,从番茄叶片中分离了GDP-L-半乳糖磷酸酶基因(LeGGP),并转入到烟草中。以野生型(WT)和转正义LeGGP烟草株系T1-3和T1-15为试材,测定了甲基紫精(MV)处理下AsA、脱氢抗坏血酸(DHA)、H2O2、O2-和叶绿素含量、抗坏血酸过氧化物酶(APX)活性、光合速率和叶绿素荧光参数等。Northem杂交分析表明LeGGP的表达受MV的诱导,在MV处理下,野生型烟草的离体叶圆片发生比转基因烟草更严重的光漂白,转基因烟草的AsA含量及清除H2O2和O2-的能力明显强于野生型,过表达LePGG胀高了烟草的生长量。并且转基因烟草比野生型具有更高的净光合效率(Pn)和光系统Ⅱ(PSII)最大光化学效率(眠)。结果表明,LeGGP的过表达有助于提高烟草AsA含量及抗氧化胁迫能力。  相似文献   

20.
研究针对从甘菊中克隆获得的DlNAC1基因(GenBank登录号为EF602305)进行生物信息学分析,并利用根癌农杆菌介导的叶盘转化法将该基因在烟草中进行过表达研究。结果发现DlNAC1蛋白具有较高亲水性,二级结构中占比最高的为无规则卷曲,并具有N糖基化位点等6类潜在的模体结构和典型的由一个扭曲的反平行β片层和α螺旋组成的NAC结构域。将DlNAC1基因在烟草中过表达后,通过PCR方法从55株转化植株中鉴定出36株为阳性植株,并且转基因烟草T0代植株在45℃高温胁迫后,转35S:DlNAC1基因阳性植株生长状况良好,而对照植株发生萎蔫,并且转基因植株叶片含水量显著高于对照植株。然而,在4℃低温胁迫后,发现转基因烟草T1代植株没有提高耐低温能力。甘菊DlNAC1基因能够提高烟草植株耐高温能力,为今后菊花抗逆育种提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号