首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at least two of the four Arabidopsis DCL proteins. PVX can also infect Arabidopsis ago2 mutants, albeit less effectively than double DCL mutants, suggesting that additional AGO proteins may mediate anti-viral defenses. Here we show, using functional assays, that all Arabidopsis AGO proteins have the potential to target PVX lacking its viral suppressor of RNA silencing (VSR), P25, but that only AGO2 and AGO5 are able to target wild-type PVX. However, P25 directly affects only a small subset of AGO proteins, and we present evidence indicating that its protective effect is mediated by precluding AGO proteins from accessing viral RNA, as well as by directly inhibiting the RNA silencing machinery. In agreement with functional assays, we show that Potexvirus infection induces AGO5 expression and that both AGO2 and AGO5 are required for full restriction of PVX infection in systemic tissues of Arabidopsis.  相似文献   

2.
Several RNA silencing pathways in plants restrict viral infections and are suppressed by distinct viral proteins. Here we show that the endogenous trans-acting (ta)siRNA pathway, which depends on Dicer-like (DCL) 4 and RNA-dependent RNA polymerase (RDR) 6, is suppressed by infection of Arabidopsis with Cauliflower mosaic virus (CaMV). This effect was associated with overaccumulation of unprocessed, RDR6-dependent precursors of tasiRNAs and is due solely to expression of the CaMV transactivator/viroplasmin (TAV) protein. TAV expression also impaired secondary, but not primary, siRNA production from a silenced transgene and increased accumulation of mRNAs normally silenced by the four known tasiRNA families and RDR6-dependent secondary siRNAs. Moreover, TAV expression upregulated DCL4, DRB4 and AGO7 that mediate tasiRNA biogenesis. Our findings suggest that TAV is a general inhibitor of silencing amplification that impairs DCL4-mediated processing of RDR6-dependent double-stranded RNA to siRNAs. The resulting deficiency in tasiRNAs and other RDR6-/DCL4-dependent siRNAs appears to trigger a feedback mechanism that compensates for the inhibitory effects.  相似文献   

3.
ARGONAUTE proteins (AGOs) are known to be key components of the RNA silencing mechanism in eukaryotes that, among other functions, serves to protect against viral invaders. Higher plants encode at least 10 individual AGOs yet the role played by many in RNA silencing-related antiviral defense is largely unknown, except for reports that AGO1, AGO2, and AGO7 play an antiviral role in Arabidopsis (Arabidopsis thaliana). In the plant virus model host Nicotiana benthamiana, Tomato bushy stunt virus (TBSV) P19 suppressor mutants are very susceptible to RNA silencing. Here, we report that a N. benthamiana AGO (NbAGO) with similarity to Arabidopsis AGO2, is involved in antiviral defense against TBSV. The activity of this NbAGO2 is shown to be directly associated with anti-TBSV RNA silencing, while its inactivation does not influence silencing of transiently expressed transgenes. Thus, the role of NbAGO2 might be primarily for antiviral defense.  相似文献   

4.
Zhang X  Zhang X  Singh J  Li D  Qu F 《Journal of virology》2012,86(12):6847-6854
While RNA silencing is a potent antiviral defense in plants, well-adapted plant viruses are known to encode suppressors of RNA silencing (VSR) that can neutralize the effectiveness of RNA silencing. As a result, most plant genes involved in antiviral silencing were identified by using debilitated viruses lacking silencing suppression capabilities. Therefore, it remains to be resolved whether RNA silencing plays a significant part in defending plants against wild-type viruses. We report here that, at a higher plant growth temperature (26°C) that permits rigorous replication of Turnip crinkle virus (TCV) in Arabidopsis, plants containing loss-of-function mutations within the Dicer-like 2 (DCL2), Argonaute 2 (AGO2), and HEN1 RNA methyltransferase genes died of TCV infection, whereas the wild-type Col-0 plants survived to produce viable seeds. To account for the critical role of DCL2 in ensuring the survival of wild-type plants, we established that higher temperature upregulates the activity of DCL2 to produce viral 22-nucleotide (nt) small interfering RNAs (vsRNAs). We further demonstrated that DCL2-produced 22-nt vsRNAs were fully capable of silencing target genes, but that this activity was suppressed by the TCV VSR. Finally, we provide additional evidence supporting the notion that TCV VSR suppresses RNA silencing through directly interacting with AGO2. Together, these results have revealed a specialized RNA silencing pathway involving DCL2, AGO2, and HEN1 that provides the host plants with a competitive edge against adapted viruses under environmental conditions that facilitates robust virus reproduction.  相似文献   

5.
Previous evidence has indicated that the P25 protein encoded by Potato virus X (PVX) inhibits either the assembly or function of the effector complexes in the RNA silencing‐based antiviral defence system (Bayne et al., Cell‐to‐cell movement of Potato Potexvirus X is dependent on suppression of RNA silencing. Plant J. 44 , 471–482). This finding prompted us to investigate the possibility that P25 targets the Argonaute (AGO) effector nuclease of RNA silencing. Co‐immunoprecipitation and Western blot analysis indicated that there is a strong interaction between P25 and AGO1 of Arabidopsis when these proteins are transiently co‐expressed in Nicotiana benthamiana. P25 also interacts with AGO1, AGO2, AGO3 and AGO4, but not with AGO5 and AGO9. As an effective suppressor, the amount of AGO1 accumulated in the presence of P25 was dramatically lower than that infiltrated with HcPro, but was restored when treated with a proteasome inhibitor MG132. These findings are consistent with the idea that RNA silencing is an antiviral defence mechanism and that the counter‐defence role of P25 is through the degradation of AGO proteins via the proteasome pathway. Further support for this idea is provided by the observation that plants treated with MG132 are less susceptible to PVX and its relative Bamboo mosaic virus.  相似文献   

6.
7.
To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions.  相似文献   

8.
9.
10.
ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B'. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.  相似文献   

11.
RNA silencing in transgenic and virus-infected plants involves a mobile silencing signal that can move cell-to-cell and systemically through the plant. It is thought that this signal can influence long-distance movement of viruses because protein suppressors of silencing encoded in viral genomes are required for long-distance virus movement. However, until now, it was not known whether the mobile signal could also influence short-range virus movement between cells. Here, through random mutation analysis of the Potato Potexvirus X (PVX) silencing suppressor P25, we provide evidence that it does. All mutants that were defective for silencing suppression were also non-functional in viral cell-to-cell movement. However, we identified mutant P25 proteins that were functional as silencing suppressors but not as movement proteins and we conclude that suppression of silencing is not sufficient to allow virus movement between cells: there must be a second P25 function that is independent of silencing but also required for cell-to-cell movement. Consistent with this hypothesis, we identified two classes of suppressor-inactive P25 mutants. One class of these mutants is proposed to be functional for the accessory function because their failure to support PVX movement could be complemented by heterologous suppressors of silencing. The second class of P25 mutants is considered defective for both the suppressor and second functions because the heterologous silencing suppressors did not restore virus movement. It is possible, based on analyses of short interfering RNA accumulation, that P25 suppresses silencing by interfering with either assembly or function of the effector complexes of RNA silencing.  相似文献   

12.
Virus infections induce the expression of ARGONAUTE1 (AGO1) mRNA and in parallel enhance the accumulation of miR168 (regulator of AGO1 mRNA). Here, we show that in virus‐infected plants the enhanced expression of AGO1 mRNA is not accompanied by increased AGO1 protein accumulation. We also show that the induction of AGO1 mRNA level is a part of the host defence reaction, whereas the induction of miR168, which overlaps spatially with virus‐occupied sectors, is mediated mainly by the Tombusvirus p19 RNA‐silencing suppressor. The absence of p19 results in the elimination of miR168 induction and accompanied with the enhanced accumulation of AGO1 protein. In transient expression study, p19 mediates the induction of miR168 and the down‐regulation of endogenous AGO1 level. P19 is not able to efficiently bind miR168 in virus‐infected plants, indicating that this activity is uncoupled from the small RNA‐binding capacity of p19. Our results imply that plant viruses can inhibit the translational capacity of AGO1 mRNA by modulating the endogenous miR168 level to alleviate the anti‐viral function of AGO1 protein.  相似文献   

13.
14.
Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.  相似文献   

15.
A role for small RNAs in DNA double-strand break repair   总被引:3,自引:0,他引:3  
Wei W  Ba Z  Gao M  Wu Y  Ma Y  Amiard S  White CI  Rendtlew Danielsen JM  Yang YG  Qi Y 《Cell》2012,149(1):101-112
Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ~21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells. We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, diRNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. Knock down of Dicer or Ago2 in human cells reduces DSB repair. Our findings reveal a conserved function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules directing chromatin modifications or the recruitment of protein complexes to DSB sites to facilitate repair.  相似文献   

16.
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.  相似文献   

17.
18.
19.
20.
Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0Tu), PLRV (P0PL) and Cucurbit aphid‐borne yellows virus (P0CA) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0PL only. Genetic analysis showed that recognition of P0Tu by a resistance gene designated RPO1 (R esistance to PO leroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0Tu mutants with substitutions in the F‐box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F‐box protein motif could indicate detection of P0‐induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号