首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTP), which leads to their reversible inactivation, has emerged as an important regulatory mechanism linking cellular tyrosine phosphorylation and signalling by reactive-oxygen or -nitrogen species (ROS, RNS). This review focuses on recent findings about the involved pathways, enzymes and biochemical mechanisms. Both the general cellular redox state and extracellular ligand-stimulated ROS production can cause PTP oxidation. Members of the PTP family differ in their intrinsic susceptibility to oxidation, and different types of oxidative modification of the PTP catalytic cysteine can occur. The role of PTP oxidation for physiological signalling processes as well as in different pathologies is described on the basis of well-investigated examples. Criteria to establish the causal involvement of PTP oxidation in a given process are proposed. A better understanding of mechanisms leading to selective PTP oxidation in a cellular context, and finding ways to pharmacologically modulate these pathways are important topics for future research.  相似文献   

2.
Regulation of protein tyrosine phosphatases (PTPs) through reversible oxidation of the active site cysteine is emerging as a general, yet poorly characterized, mechanism for control of the activity of this important group of enzymes. This regulatory mechanism was initially described after in vitro treatment of PTPs with oxidizing agents. However, accumulating evidence has substantiated the notion that this mechanism is also operating in vivo, e.g., in association with the transient increase in H(2)O(2) production which occurs after activation of receptor tyrosine kinases. A novel generic antibody-based method for monitoring of PTP oxidation is described. The sensitivity of this strategy has been validated by the demonstration of oxidation of endogenously expressed PTPs after stimulation of cells with growth factors. The method was also instrumental in providing the first evidence for intrinsic differences between PTP domains with regard to sensitivity to oxidation.  相似文献   

3.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

4.
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.  相似文献   

5.
Regulation of PTP1B via glutathionylation of the active site cysteine 215.   总被引:6,自引:0,他引:6  
The reversible regulation of protein tyrosine phosphatase is an important mechanism in processing signal transduction and regulating cell cycle. Recent reports have shown that the active site cysteine residue, Cys215, can be reversibly oxidized to a cysteine sulfenic derivative (Denu and Tanner, 1998; Lee et al., 1998). We propose an additional modification that has implications for the in vivo regulation of protein tyrosine phosphatase 1B (PTP1B, EC 3.1.3.48): the glutathionylation of Cys215 to a mixed protein disulfide. Treatment of PTP1B with diamide and reduced glutathione or with only glutathione disulfide (GSSG) results in a modification detected by mass spectrometry in which the cysteine residues are oxidized to mixed disulfides with glutathione. The activity is recovered by the addition of dithiothreitol, presumably by reducing the cysteine disulfides. In addition, inactivated PTP1B is reactivated enzymatically by the glutathione-specific dethiolase enzyme thioltransferase (glutaredoxin), indicating that the inactivated form of the phosphatase is a glutathionyl mixed disulfide. The cysteine sulfenic derivative can easily oxidize to its irreversible sulfinic and sulfonic forms and hinder the regulatory efficiency if it is not converted to a more stable and reversible end product such as a glutathionyl derivative. Glutathionylation of the cysteine sulfenic derivative will prevent the enzyme from further oxidation to its irreversible forms, and constitutes an efficient regulatory mechanism.  相似文献   

6.
Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs.  相似文献   

7.
The posttranslational regulation of protein tyrosine phosphatases (PTPs) has been suggested to have a crucial role in maintaining the phosphotyrosine level in cells. Here we examined the regulatory effects of metal ions on human dual-specificity vaccinia H1-related protein tyrosine phosphatase (VHR) in vitro. Among various metal ions examined, Fe3+, Cu2+, Zn2+, and Cd2+ exerted their inactivational effects on VHR, and Cu2+ is the most potent inactivator. The VHR activity inactivated by the metal ions except Cu2+ was significantly restored by EDTA. The efficacy of Cu2+ for the VHR inactivation was about 200-fold more potent than that of H2O2. Cu2+ also inactivated other PTPs including PTP1B and SHP-1. The Cu2+-mediated inactivation at the submicromolar range was eradicated by dithiothreitol treatment. The loss of VHR activity correlated with the decreased [14C]iodoacetate labeling of active-site cysteine, suggesting that Cu2+ brought about the oxidation of the active-site cysteine. On the contrary, Zn2+ that exerted an inactivational effect at millimolar concentrations appeared not directly linked to the active-site cysteine, as indicated by the fact that [14C]iodoacetate labeling was unaffected and that the effect of Zn2+ on the Y78F mutant was increased. The reduction potential of VHR was estimated to be -331 mV by utilizing the reversibility of the redox state of VHR. Thus, we conclude that the highly potent Cu2+ inactivation of VHR is a consequence of the oxidation of the active-site cysteine and the mode of Zn2+ inactivation is distinct from that of Cu2+.  相似文献   

8.
Protein tyrosine phosphatases (PTPases) contain an active site cysteine which when oxidized leads to loss of phosphatase activity and accumulation of phosphoproteins. For example, oxidants produced following EGF stimulation inhibit PTP1B and enhance EGF receptor phosphorylation. Because NO-derived species also modify reactive thiols, we postulated that NO would reversibly inhibit PTP1B. In our studies we exposed A431 or Jurkat cells to NO donors and measured PTP1B activity or used 3-maleimidylpropionylbiocytin (MPB) to measure thiol redox status. Nitrosothiols led to a rapid inhibition of PTP1B through a mechanism that was greatly enhanced by addition of cysteine to the medium. Analysis of thiol oxidation status using immunoprecipitated PTP1B showed modification consistent with loss of activity. Both enzyme inhibition and modification were reversible in intact cells or after addition of DTT to cell lysates. While DTT reversed oxidation, ascorbate did not, suggesting that formation of a mixed disulfide (possibly glutathionylation) rather than S-nitrosylation accounts for PTP1B inhibition. Importantly, PTP1B inhibition by nitrosothiols led to EGF receptor phosphorylation even in the absence of exogenously added EGF. These findings suggest an important role for NO in modulating signaling pathways since inhibition of PTPases could potentially enhance or prolong activity of phosphoproteins.  相似文献   

9.
Protein tyrosine phosphatases (PTPs) contain an essential thiol in the active site which may be susceptible to attack by nitric oxide-derived biological oxidants. We assessed the effects of peroxynitrite, nitric oxide, and S-nitrosoglutathione on the activity of three human tyrosine phosphatases in vitro. The receptor-like T-cell tyrosine phosphatase (CD45), the non-receptor-like tyrosine phosphatase PTP1B, and leukocyte-antigen-related (LAR) phosphatase were all irreversibly inactivated by peroxynitrite in less than 1 s with IC(50) values of 相似文献   

10.
Sohn J  Rudolph J 《Biochemistry》2003,42(34):10060-10070
Cdc25 phosphatases belong to the family of protein tyrosine phosphatases (PTPs) that contain an active-site cysteine and form a phosphocysteine intermediate. Recently, oxidation/reduction of active-site cysteines of PTPs, including Cdc25, has been proposed to serve as a form of reversible regulation for this class of enzymes. Here we provide in vitro evidence that supports the chemical and kinetic competence for oxidation/reduction of the active-site cysteines of Cdc25B and Cdc25C as a mechanism of regulation. Using kinetic measurements and mass spectrometry, we have found that the active-site cysteines of the Cdc25's are highly susceptible to oxidation. The rate of thiolate conversion to the sulfenic acid by hydrogen peroxide for Cdc25B is 15-fold and 400-fold faster than that for the protein tyrosine phosphatase PTP1B and the cellular reductant glutathione, respectively. If not for the presence of an adjacent (back-door) cysteine in proximity to the active-site cysteine in the Cdc25's, the sulfenic acid would rapidly oxidize further to the irreversibly inactivated sulfinic acid, as determined by using kinetic partitioning and mass spectrometry with mutants of these back-door cysteines. Thus, the active-site cysteine is protected by rapid intramolecular disulfide formation with the back-door cysteines in the wild-type enzymes. These intramolecular disulfides can then be rapidly and effectively rereduced by thioredoxin/thioredoxin reductase but not glutathione. Thus, the chemistry and kinetics of the active-site cysteines of the Cdc25's support a physiological role for reversible redox-mediated regulation of the Cdc25's, important regulators of the eukaryotic cell cycle.  相似文献   

11.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement because it is able to bind and dephosphorylate the activated receptor. LMW-PTP presents two cysteines in positions 12 and 17, both belonging to the catalytic pocket; this is a unique feature of LMW-PTP among all protein tyrosine phosphatases. Our previous results demonstrated that in vitro LMW-PTP is oxidized by either H(2)O(2) or nitric oxide with the formation of a disulfide bond between Cys-12 and Cys-17. This oxidation leads to reversible enzyme inactivation because treatment with reductants permits catalytic activity rescue. In the present study we investigated the in vivo inactivation of LMW-PTP by either extracellularly or intracellularly generated H(2)O(2), evaluating its action directly on its natural substrate, PDGF receptor. LMW-PTP is oxidized and inactivated by exogenous oxidative stress and recovers its activity after oxidant removal. LMW-PTP is oxidized also during PDGF signaling, very likely upon PDGF-induced H(2)O(2) production, and recovers its activity within 40 min. Our results strongly suggest that reversibility of in vivo LMW-PTP oxidation is glutathione-dependent. In addition, we propose an intriguing and peculiar role of Cys-17 in the formation of a S-S intramolecular bond, which protects the catalytic Cys-12 from further and irreversible oxidation. On the basis of our results we propose that the presence of an additional cysteine near the catalytic cysteine could confer to LMW-PTP the ability to rapidly recover its activity and finely regulate PDGF receptor activation during both extracellularly and intracellularly generated oxidative stress.  相似文献   

12.
Ultraviolet (UV) irradiation rapidly increases tyrosine phosphorylation (i.e. activates) of epidermal growth factor receptors (EGFR) in human skin. EGFR-dependent signaling pathways drive increased expression of matrix metalloproteinases, whose actions fragment collagen and elastin fibers, the primary structural protein components in skin connective tissue. Connective tissue fragmentation, which results from chronic exposure to solar UV irradiation, is a major determinant of premature skin aging (photoaging). UV irradiation generates reactive oxygen species, which readily react with conserved cysteine residues in the active site of protein-tyrosine phosphatases (PTP). We report here that EGFR activation by UV irradiation results from oxidative inhibition of receptor type PTP-kappa (RPTP-kappa). RPTP-kappa directly counters intrinsic EGFR tyrosine kinase activity, thereby maintaining EGFR in an inactive state. Reversible, oxidative inactivation of RPTP-kappa activity by UV irradiation shifts the kinase-phosphatase balance in favor of EGFR activation. These data delineate a novel mechanism of EGFR regulation and identify RPTP-kappa as a key molecular target for antioxidant protection against skin aging.  相似文献   

13.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

14.
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.  相似文献   

15.
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family.  相似文献   

16.
Reversible phosphorylation of tyrosine residues is a key regulatory mechanism for numerous cellular events. Protein tyrosine kinases and protein tyrosine phosphatases (PTPs) have a pivotal role in regulating both normal cell physiology and pathophysiology. Accordingly, deregulated activity of both protein tyrosine kinases and PTPs is involved in the development of numerous congenitically inherited and acquired human diseases, prompting obvious pharmaceutical and academic research interest. The development of compound libraries with higher selective PTP inhibitory activity has been bolstered by the realization that many natural products have such activity and thus are interesting biologically lead compounds, which properties are widely exploited. In addition, more rational approaches have focused on the incorporation of phosphotyrosine mimetics into specific peptide templates (peptidomimetic backbones). Additional factors furthering discovery as well as therapeutic application of new bioactive molecules are the integration of functional genomics, cell biology, structural biology, drug design, molecular screening and chemical diversity. Together, all these factors will lead to new avenues to treat clinical disease based on PTP inhibition.  相似文献   

17.
The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the K(m) and V(max) values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys(7), to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys(7)SerAsp(125)Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803.  相似文献   

18.
We have characterized some novel caged fluorescein diphosphates as photoactivatable, cell-permeable substrates for protein tyrosine phosphatases and explored their usefulness in identifying inhibitors of tyrosine phosphatases. 1-(2-Nitrophenyl)ethyl protected fluorescein diphosphate (NPE-FDP) undergoes rapid photolysis to release FDP upon irradiation with a 450-W UV immersion lamp and its by-product does not inactivate protein tyrosine phosphatase 1B (PTP1B) or alters the viability of cells. The generated FDP from photolysis of NPE-FDP was shown to have exactly the same properties as FDP, which can be used as a PTP substrate in pure enzyme assays. We have also demonstrated that the PTP activity can be measured using NPE-FDP in small droplets. Its advantage as an inert substrate before photolysis allows the possibility of applying nanospray technology in screening and optimizing PTP inhibitors through a large chemical library. Like other caged bioeffectors such as nucleotide and inositol trisphosphate, NPE-FDP is cell-permeable. The NPE-FDP can be photolyzed to generate FDP inside cells, and then can be hydrolyzed by phosphatases to produce fluorescein monophosphate and subsequently to fluorescein. Although Jurkat cells contain high concentrations of CD45, it has not been possible to use FDP as a substrate to measure CD45 activity in the intact cell. This is due to the hydrolysis of FDP by several other cellular phosphatases. However, NPE-FDP can be useful as a cell-permeable substrate for overexpressed phosphatases such as alkaline phosphatase.  相似文献   

19.
The reversible phosphorylation of proteins on tyrosine residues is fundamental to a variety of intracellular signaling pathways and is controlled by the actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). While much progress has been made in understanding the regulation of PTKs, there is still relatively little known concerning the regulation of PTPs. Using immune complex phosphatase assays, we demonstrated that the enzymatic activity of the nonreceptor type PTP, PTP1B, is regulated by cell adhesion. Placing primary human foreskin fibroblasts (HFFs) in suspension leads to a distinct increase in PTP1B activity, whereas the readhesion of suspended HFFs onto fibronectin or collagen I inhibited activity. To gain insight into the mechanisms involved, we analyzed recombinant forms of PTP1B mutated at potential regulatory sites. Our results indicated that tyrosine residue 66 is essential for maintaining activity at 37 degrees C. We also found that the C-terminal region of PTP1B and localization to the endoplasmic reticulum are not required for the inhibition of activity by cell adhesion. However, analysis of PA-PTP1B, in which alanines are substituted for prolines 309 and 310, revealed an important role for these residues as the catalytic activity of this mutant did not decrease following readhesion onto collagen I. Since the binding of p130cas and Src to PTP1B is dependent upon these proline residues, we assayed the regulation of PTP1B in mouse embryo fibroblasts deficient in these proteins. We found that neither p130cas nor Src is required for the inhibition of PTP1B activity by adhesion to extracellular matrix proteins. Additionally, pretreatment with cytochalasin D did not prevent the reduction of PTP1B activity when cells adhered to collagen I, indicating that cell spreading is not required for this regulation. The control of the catalytic activity of PTP1B by cell adhesion demonstrated in this study is likely to have important implications for growth factor and insulin signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号