首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence-resolved detection of pausing by single RNA polymerase molecules   总被引:4,自引:0,他引:4  
Herbert KM  La Porta A  Wong BJ  Mooney RA  Neuman KC  Landick R  Block SM 《Cell》2006,125(6):1083-1094
  相似文献   

2.
The influence of native connectivity of secondary structure elements (SSE) on folding is studied using coarse-grained models of proteins with mixed alpha and beta structure and the analysis of the structural database of wild-type proteins. We found that the distribution of SSE along a sequence determines the diversity of folding pathways. If alpha and beta SSE are localized in different parts of a sequence, the diversity of folding pathways is restricted. An even (symmetric) distribution of alpha and beta SSE with respect to sequence midpoint favors multiple folding routes. Simulations are supplemented by the database analysis of the distribution of SSE in wild-type protein sequences. On an average, two-thirds of wild-type proteins with mixed alpha and beta structure have symmetric distribution of alpha and beta SSE. The propensity for symmetric distribution of SSE is especially evident for large proteins with the number of SSE > or = 10. We suggest that symmetric SSE distribution in protein sequences may arise due to nearly random allocation of alpha and beta structure along wild-type sequences. The tendency of long sequences to misfold is perhaps compensated by the enhanced pathway diversity. In addition, folding pathways are shown to progress via hierarchic assembly of SSE in accordance with their proximity along a sequence. We demonstrate that under mild denaturation conditions folding and unfolding pathways are similar. However, the reversibility of folding/unfolding pathways is shown to depend on the distribution of SSE. If alpha and beta SSE are localized in different parts of a sequence, folding and unfolding pathways are likely to coincide.  相似文献   

3.
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.  相似文献   

4.
The DNA-binding domain of Myb consists of three imperfect tandem repeats and the third one which is essential for sequence-specific binding was established to have a helix-turn-helix-related motif. DNA sequences recognized by Myb have been reported to contain TAACPy sequence. Here we have examined the details of Myb-binding sequence. Using DNAs with a single mutation on the various sites of two specific DNAs and some fragments of the DNA-binding domain of Myb, we have found that (i) in a specific DNA which contains only one AAC sequence, each AAC nucleotide is found to be essential for the specific binding of Myb, while any other mutations cause no serious binding loss, (ii) in a specific DNA which contains two AAC sequences separately, one AAC is not so important in the binding, and (iii) for the specific binding with DNA, at least both repeats 2 and 3 of Myb are required. These findings suggest that repeat 3 containing a helix-turn-helix-related structure recognizes the core AAC sequence and repeat 2 supports this recognition by interactions with phosphate groups of DNA.  相似文献   

5.
6.
TonB is a proline-rich protein which provides a functional link between the inner and outer membranes of Gram-negative bacteria. TonB is anchored to the inner membrane via an N-terminal signal-like sequence and spans the periplasm, interacting with transport receptors in the outer membrane. We have investigated the role of the N-terminal signal-like peptide in TonB function. Replacement of the N-terminal sequence with heterologous sequences indicates that it has at least three distinct rotes in TonB function: (i) to facilitate translocation of TonB across the cytoplasmic membrane; (ii) to anchor TonB to the cytoplasmic membrane; (iii) a sequence-specific functional interaction with the ExbBD proteins.  相似文献   

7.
IHF and HU are small basic proteins of eubacteria that bind as homodimers to double-stranded DNA and bend the duplex to promote architectures required for gene regulation. These architectural proteins share a common alpha/beta fold but exhibit different nucleic acid binding surfaces and distinct functional roles. With respect to DNA-binding specificity, for example, IHF is sequence specific, while HU is not. We have employed Raman difference spectroscopy and gel mobility assays to characterize the molecular mechanisms underlying such differences in DNA recognition. Parallel studies of solution complexes of IHF and HU with the same DNA nonadecamer (5' --> 3' sequence: TC TAAGTAGTTGATTCATA, where the phage lambda H1 consensus sequence of IHF is underlined) show the following. (i) The structure of the targeted DNA site is altered much more dramatically by IHF than by HU binding. (ii) In the IHF complex, the structural perturbations encompass both the sugar-phosphate backbone and the bases of the consensus sequence, whereas only the DNA backbone is altered by HU binding. (iii) In the presence of excess protein, complexes of order higher than 1 dimer per duplex are detected for HU:DNA, though not for IHF:DNA. The results differentiate structural motifs of IHF:DNA and HU:DNA solution complexes, provide Raman signatures of prokaryotic sequence-specific and nonspecific recognition, and suggest that the architectural role of HU may involve the capability to recruit additional binding partners to even relatively short DNA sequences.  相似文献   

8.
In the present study, we developed a method for detecting sequences whose similarity to a target sequence is statistically significant and we examined the distribution of these sequences in the E. coli K-12 genome. Target sequences examined are as follows: (i) short repeat: Crossover hot-spot instigator (Chi) sequence, replication termination (Ter) sequence, and DnaA binding sequence (DnaA box); (ii) potential stem-loop structure repeats: palindromic unit (PU), boxC sequences, and intergenic repeat unit (IRU); (iii) potential RNA coding repeats: rRNAs, PAIR, TRIP, and QUAD; and (iv) potential protein coding repeats: insertion elements (ISs) and Long Direct Repeats (LDRs). We also examined the distribution of these sequences on leading and lagging strands. We obtained another four statistically significant LDR sequences with more than 187 bp matched to LDR-A near the LDR loci, suggesting that these regions might be used as high recombination hot spots for LDR. Adaptation of individual LDRs to E. coli genome is also discussed on the basis of codon usage.  相似文献   

9.
A simple model is put forward to explain the long-known three-base periodicity in coding DNA. We propose the concept of same-phase triplet clustering, i.e. a condition wherein a triplet appears several times in one phase without interruption by the two other possible phases. For instance, in the sequence (i): NTT_GNN_NTT_GNN_NTT_GNN_NNN_NTT_GNN (where N is any nucleotide but combinations producing TTG are excluded) there would be clustering of same-phase TTG because this triplet appears uninterruptedly in phase 2. In contrast, in the sequence (ii): TTG_NTT_GNN_NNT_TGN_NNN_NTT_GNN there is no same-phase clustering because neighboring TTGs are all in different phases. Observe also that in sequence (i) TTG triplets are separated by 3, 3 and 6 nucleotides (3n distances), while in sequence (ii) they are separated by 1, 4 and 5 nucleotides (non-3n distances). In this work, we demonstrate that in coding DNA the 3n distances generated by (i)-type sequences proportionally outnumber the non-3n distances generated by (ii)-type sequences, this condition would be the basis of three-base periodicity. Randomized sequences had (i)- and (ii)-type sequences too but clustering was statistically different. To prove our model we generated (i)-type sequences in a randomized sequence by inducing clustering of same-phase triplets. In agreement with the model this sequence displayed three-base periodicity. Furthermore, two- and four-base periodicities could also be induced by artificially inducing clustering of duplets and tetraplets.  相似文献   

10.
Methods to measure the sequence diversity of polymerase chain reaction (PCR)-amplified DNA lack standards for use as assay calibrators and controls. Here we present a general and economical method for developing customizable DNA standards of known sequence diversity. Standards ranging from 1 to 25,000 sequences were generated by directional ligation of oligonucleotide “words” of standard length and GC content and then amplified by PCR. The sequence accuracy and diversity of the library were validated using AmpliCot analysis (DNA hybridization kinetics) and Illumina sequencing. The library has the following features: (i) pools containing tens of thousands of sequences can be generated from the ligation of relatively few commercially synthesized short oligonucleotides; (ii) each sequence differs from all others in the library at a minimum of three nucleotide positions, permitting discrimination between different sequences by either sequencing or hybridization; (iii) all sequences have identical length, GC content, and melting temperature; (iv) the identity of each standard can be verified by restriction digestion; and (v) once made, the ends of the library may be cleaved and replaced with sequences to match any PCR primer pair. These standards should greatly improve the accuracy and reproducibility of sequence diversity measurements.  相似文献   

11.
Abstract: Gene regB of bacteriophage T4 encodes a sequence-specific endoribonuclease which introduces cuts in early phage messenger RNAs. In most cases, cutting takes place in the middle of the tetranucleotide GGAG. Efficient cleavages occur in the motifs located in intergenic regions, some of them being Shine-Dalgarno sequences. When located in a coding sequence, this tetranucleotide is poorly recognized or not at all. In this article, we have reviewed the properties of the RegB endoribonuclease, with emphasis on its possible roles in T4 development. We show that the nuclease RegB plays at least two roles: (i) it inactivates a sub-class of early mRNA by cleaving Shine-Dalgarno sequences, and (ii) it is necessary for the degradationn of early mRNAs, but not of middle and late mRNAs. Accordingly, we found that middle and late mRNAs avoid processing by RegB, probably for different reasons. Most of the middle mRNAs (mRNAs initiated at MotA-dependent promoters) do not contain the motif GGAG in their intergenic regions, whereas about one-third of the late genes have this motif as Shine-Dalgarno sequence. It is not yet known whether the RNase is inactivated early in the phage cycle, or whether it remains active but cannot recognize late mRNAs as substrates.  相似文献   

12.
13.
Hud NV  Plavec J 《Biopolymers》2003,69(1):144-158
The fine structure of the DNA double helix and a number of its physical properties depend upon nucleotide sequence. This includes minor groove width, the propensity to undergo the B-form to A-form transition, sequence-directed curvature, and cation localization. Despite the multitude of studies conducted on DNA, it is still difficult to appreciate how these fundamental properties are linked to each other at the level of nucleotide sequence. We demonstrate that several sequence-dependent properties of DNA can be attributed, at least in part, to the sequence-specific localization of cations in the major and minor grooves. We also show that effects of cation localization on DNA structure are easier to understand if we divide all DNA sequences into three principal groups: A-tracts, G-tracts, and generic DNA. The A-tract group of sequences has a peculiar helical structure (i.e., B*-form) with an unusually narrow minor groove and high base-pair propeller twist. Both experimental and theoretical studies have provided evidence that the B*-form helical structure of A-tracts requires cations to be localized in the minor groove. G-tracts, on the other hand, have a propensity to undergo the B-form to A-form transition with increasing ionic strength. This property of G-tracts is directly connected to the observation that cations are preferentially localized in the major groove of G-tract sequences. Generic DNA, which represents the vast majority of DNA sequences, has a more balanced occupation of the major and minor grooves by cations than A-tracts or G-tracts and is thereby stabilized in the canonical B-form helix. Thus, DNA secondary structure can be viewed as a tug of war between the major and minor grooves for cations, with A-tracts and G-tracts each having one groove that dominates the other for cation localization. Finally, the sequence-directed curvature caused by A-tracts and G-tracts can, in both cases, be explained by the cation-dependent mismatch of A-tract and G-tract helical structures with the canonical B-form helix of generic DNA (i.e., a cation-dependent junction model).  相似文献   

14.
Little is known with respect to bacterial population structures in freshwater environments. Using complementary culture-based, cloning, and high-throughput Illumina sequencing approaches, we investigated microdiverse clusters of bacteria that comprise members with identical or very similar 16S rRNA gene sequences. Two 16S rRNA phylotypes could be recovered by cultivation in low-nutrient-strength liquid media from two lakes of different trophic status. Both phylotypes were found to be physiologically active in situ throughout most of the year, as indicated by the presence of their rRNA sequences in the samples. Analyses of internal transcribed spacer (ITS1) sequences revealed the presence of seven different sequence types among cultured representatives and the cloned rrn fragments. Illumina sequencing yielded 8,576 ITS1 sequences that encompassed 15 major and numerous rare sequence types. The major ITS1 types exhibited distinct temporal patterns, suggesting that the corresponding Sphingomonadaceae lineages occupy different ecological niches. However, since strains of the same ITS1 type showed highly variable substrate utilization patterns, the potential mechanism of niche separation in Sphingomonadaceae cannot be explained by substrate utilization alone and may be related to other traits.  相似文献   

15.
The RNA elements that are required for replication of defective interfering (DI) RNA of the JHM strain of mouse hepatitis virus (MHV) consist of three discontinuous genomic regions: about 0.46 to 0.47 kb from both terminal sequences and an internal 58-nucleotide (nt)-long sequence (58-nt region) present at about 0.9 kb from the 5′ end of the DI genome. The internal region is important for positive-strand DI RNA synthesis (Y. N. Kim and S. Makino, J. Virol. 69:4963–4971, 1995). We further characterized the 58-nt region in the present study and obtained the following results. (i) The positive-strand RNA structure in solution was comparable with that predicted by computer modeling. (ii) Positive-strand RNA secondary structure, but not negative-strand RNA structure, was important for the biological function of the region. (iii) The biological function had a sequence-specific requirement. We discuss possible mechanisms by which the internal cis-acting signal drives MHV positive-strand DI RNA synthesis.  相似文献   

16.
A computer program, which runs on MS-DOS personal computers, is described that assists in the design of synthetic genes coding for proteins. The goal of the program is the design of a gene which (i) contains as many unique restriction sites as possible and (ii) uses a specific codon usage. The gene designed according to the criteria above is (i) suitable for 'modular mutagenesis' experiments and (ii) optimized for expression. The program 'reverse-translates' protein sequences into degenerated DNA sequences, generates a map of potential restriction sites and locates sequence positions where unique restriction sites can be accommodated. The nucleic acid sequence is then 'refined' according to a specific codon usage to remove any degeneration. Unique restriction sites, if potentially present, can be 'forced' into the degenerated nucleic acid sequence by using 'priority codes' assigned to different restriction sequences.  相似文献   

17.
Structure of a Cephalosporium acremonium mtDNA replicator   总被引:1,自引:0,他引:1  
We have investigated the ARS (autonomously replicating sequence) activity of a 1.94 kb mitochondrial DNA fragment of Cephalosporium acremonium and found that several subfragments of this piece of mtDNA conferred the ARS phenotype. The nucleotide sequence of the fragment shows: (i) a high A + T content (72.5%); (ii) a perfect consensus ARS sequence (ATTTATATTTA) in the subfragment with the highest ARS activity; (iii) a large number of ARS consensus-related sequences in the other subfragments, even in one lacking ARS activity; (iv) several potential hairpin structures. One of them contains the perfect consensus ARS sequence.  相似文献   

18.
19.
Relating Amino Acid Sequence to Phenotype: Analysis of Peptide-Binding Data   总被引:1,自引:0,他引:1  
We illustrate data analytic concerns that arise in the context of relating genotype, as represented by amino acid sequence, to phenotypes (outcomes). The present application examines whether peptides that bind to a particular major histocompatibility complex (MHC) class I molecule have characteristic amino acid sequences. However, the concerns identified and addressed are considerably more general. It is recognized that simple rules for predicting binding based solely on preferences for specific amino acids in certain (anchor) positions of the peptide's amino acid sequence are generally inadequate and that binding is potentially influenced by all sequence positions as well as between-position interactions. The desire to elucidate these more complex prediction rules has spawned various modeling attempts, the shortcomings of which provide motivation for the methods adopted here. Because of (i) this need to model between-position interactions, (ii) amino acids constituting a highly (20) multilevel unordered categorical covariate, and (iii) there frequently being numerous such covariates (i.e., positions) comprising the sequence, standard regression/classification techniques are problematic due to the proliferation of indicator variables required for encoding the sequence position covariates and attendant interactions. These difficulties have led to analyses based on (continuous) properties (e.g., molecular weights) of the amino acids. However, there is potential information loss in such an approach if the properties used are incomplete and/or do not capture the mechanism underlying association with the phenotype. Here we demonstrate that handling unordered categorical covariates with numerous levels and accompanying interactions can be done effectively using classification trees and recently devised bump-hunting methods. We further tackle the question of whether observed associations are attributable to amino acid properties as well as addressing the assessment and implications of between-position covariation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号