首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用一个F2作图群体(X178×B73),首先构建了一个含有130个SSRs的玉米连锁框架图,然后用119个AFLPs位点增加图谱密度,得到一个全长1659·3cM,标记间平均间距6·66cM的玉米相对饱和连锁图。同时,对SSRs和AFLPs的一些遗传特性进行了分析,探讨了AFLP标记进行共显性分析的一种新方法。分析表明SSRs和AFLPs分子标记具有多态性和可靠性高等特点,是构建高密度分子标记遗传连锁图的有效技术。加密的玉米遗传连锁图谱为比较基因组研究、数量性状位点(quantitativetraitloci,QTLs)克隆、杂种优势机理研究以及标记辅助选择等提供了技术基础。  相似文献   

2.
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different- colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were sampled. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating independently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once. Received: 3 October 2000 / Accepted: 19 February 2001  相似文献   

3.
The performance of different molecular markers in the assessment of population structure was tested using samples of Solea vulgaris collected in the Mediterranean within and outside the hypothetical dispersal ability of the species. A total of 172 individuals belonging to four population samples were analysed using 15 microsatellites [simple sequence repeats (SSRs)] and 153 amplified fragment length polymorphisms (AFLPs). Considering the global qualitative patterns, we found a correlation between SSRs and AFLPs in detecting genetic differentiation among samples. However, on a small geographical scale, AFLPs were able to discriminate individuals from neighbouring populations whereas SSRs were not, and the percentage of individuals correctly assigned to their population of origin was higher with AFLPs than with SSRs. The high number of loci analysed with the AFLP technique could increase the probability to include outlier loci in the analysis; however, the neutrality test performed on our data set did not show evidence of selection acting on the S. vulgaris samples. Even if the choice of the molecular marker depends mainly on the biological question to be addressed, the higher power of discrimination and the comparative technical ease of obtaining data from AFLPs with respect to SSRs suggest the use of AFLPs for many population genetics studies.  相似文献   

4.
A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.  相似文献   

5.
Multilocus DNA markers [random amplified polymorphic DNA (RAPDs), amplified fragment length polymorphism (AFLPs)] are important for population studies because they reveal many polymorphic loci distributed over the genome. The markers are dominant, that is two phenotypes are distinguished at each locus, with a band and with no band. The latter one represents null-homozygotes with unamplified, recessive null-alleles. The frequency of a null-allele can be estimated by taking the square root of the fraction of individuals with no band. Lynch and Milligan (1994) have suggested a modified procedure that reduces bias introduced by the square-root transform. However, the procedure recommends to ignore those samples in which fewer than four null-homozygotes are observed. This may lead to significant bias in estimates of genetic diversity. In this study, I introduce a Bayesian approach to estimation of null-allele frequencies for dominant DNA markers. It follows from computer simulations and data on two conifer species that the Bayesian method gives nearly unbiased estimates of heterozygosity, genetic distances and F-statistics. The influence of a prior distribution and departure from Hardy-Weinberg proportions on the estimates is also considered.  相似文献   

6.
DNA amplification fingerprinting (DAF) using a high primer-to-template ratio and single, very short arbitrary primers, was used to generate amplified fragment length polymorphic markers (AFLP) in soybean (Glycine max (L.) Merr.). The inheritance of AFLPs was studied using a cross between the ancestral Glycine soja PI468.397 and Glycine max (L.) Merr. line nts382, F1 and F2 progeny. The amplification reaction was carried out with soybean genomic DNA and 8 base long oligounucleotide primers. Silver-stained 5% polyacrylamide gels containing 7 M urea detected from 11 to 28 DAF products with primers of varying GC content (ranging from 50 to 100% GC). Depending on their intensity, AFLPs were classified into three classes. DAF profiles were reproducible for different DNA extractions and gels. Forty AFLPs were detected by 26 primers when comparing G. soja and G. max. Most AFLPs were inherited as dominant Mendelian markers in F1 and F2 populations. However, abnormal inheritance occured with about 25% of polymorphisms. One marker was inherited as a maternal marker, presumably originating from organelle DNA while another showed apparent paternal inheritance. To confirm the nuclear origin and utility of dominant Mendelian markers, three DAF polymorphisms were mapped using a F11 mapping population of recombinant inbred lines from soybean cultivars Minsoy × Noir 1. The study showed that DAF-generated polymorphic markers occur frequently and reliably, that they are inherited as Mendelian dominant loci and that they can be used in genome mapping.  相似文献   

7.
Genetic identity and relatedness of the durum wheat Graziella Ra, four Italian commercial durum cultivars (Cappelli, Grazia, Flaminio and Svevo) and Kamut were evaluated using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs) and α-gliadin gene sequence analysis. Our primary objective was to study molecular genetic diversity in such a set of wheats including three modern (Grazia, Flaminio and Svevo) and three older (Cappelli, Kamut and Graziella Ra) durum accessions. Specifically, we aimed at determining the relationship between the historic accession Graziella Ra and Kamut, which is considered an ancient relative of the durum subspecies. Obtained results revealed that (1) both AFLP and SSR molecular markers detected highly congruent patterns of genetic diversity among the accessions showing nearly similar efficiency; (2) for AFLPs, percentage of polymorphic loci within accession ranged from 6.57% to 19.71% (mean, 12.77%) and for SSRs, from 0% to 57.14% (mean, 28.57%); (3) principal component analysis of genetic distance among accessions showed the first two axes accounting for 58.03% (for AFLPs) and 61.60% (for SSRs) of the total variability; (4) for AFLPs, molecular variance was partitioned into 80% (variance among accessions) and 20% (within accession) and for SSRs, into 73% (variance among accessions) and 27% (within accession); (5) cluster analysis of AFLPs and SSRs datasets displayed Graziella Ra and Kamut constantly grouped into the same cluster; and (6) molecular comparison of α-gliadin gene sequences showed Graziella Ra and Kamut in separate clusters. All these findings support the hypothesis that Graziella Ra and Kamut, although very similar, at least in the little part of the genome investigated by molecular markers employed in this study, might be considered as distinct accessions.  相似文献   

8.
A Wong  M R Forbes  M L Smith 《Génome》2001,44(4):677-684
Amplified fragment length polymorphism (AFLP) analysis is becoming increasingly popular as a method for generating molecular markers for population genetic applications. For practical considerations, it is generally assumed in population studies that AFLPs segregate as dominant markers, i.e., that present and absent are the only possible states of a given locus. We tested the assumption of dominance in natural populations of the damselfly Nehalennia irene (Hagen) (Odonata: Coenagrionidae). Electro-blotted AFLP products from 21 samples were probed with individual markers. Eleven markers were analyzed, of which two were monomorphic and nine were polymorphic. Only two of the polymorphic markers behaved in a strictly dominant manner. The remaining seven polymorphic markers displayed various degrees of codominance, with 2-10 visible alleles in the sample. Of the three markers displaying the highest degree of variability, two contained microsatellite repeat tracts. Our results suggest that the assumption of dominance is unfounded. As a result, AFLP analysis may be unsuitable for estimating several important population genetic parameters, including genetic diversity.  相似文献   

9.
Amplified fragment length polymorphisms (AFLPs) are a widely used marker system: the technique is very cost-effective, easy and rapid, and reproducibly generates hundreds of markers. Unfortunately, AFLP alleles are typically scored as the presence or absence of a band and, thus, heterozygous and dominant homozygous genotypes cannot be distinguished. This results in a significant loss of information, especially as regards mapping of quantitative trait loci (QTLs). We present a Monte Carlo Markov Chain method that allows us to compute the identity by descent probabilities (IBD) in a general pedigree whose individuals have been typed for dominant markers. The method allows us to include the information provided by the fluorescent band intensities of the markers, the rationale being that homozygous individuals have on average higher band intensities than heterozygous individuals, as well as information from linked markers in each individual and its relatives. Once IBD probabilities are obtained, they can be combined into the QTL mapping strategy of choice. We illustrate the method with two simulated populations: an outbred population consisting of full sib families, and an F2 cross between inbred lines. Two marker spacings were considered, 5 or 20 cM, in the outbred population. There was almost no difference, for the practical purpose of QTL estimation, between AFLPs and biallelic codominant markers when the band density is taken into account, especially at the 5 cM spacing. The performance of AFLPs every 5 cM was also comparable to that of highly polymorphic markers (microsatellites) spaced every 20 cM. In economic terms, QTL mapping with a dense map of AFLPs is clearly better than microsatellite QTL mapping and little is lost in terms of accuracy of position. Nevertheless, at low marker densities, AFLPs or other biallelic markers result in very inaccurate estimates of QTL position.  相似文献   

10.
High-throughput targeted SSR marker development in peach (Prunus persica).   总被引:2,自引:0,他引:2  
Simple sequence repeats (SSRs) have proven to be highly polymorphic, easily reproducible, codominant markers. However, developing an SSR map is very time consuming and expensive, and most SSRs are not specifically linked to gene loci of immediate interest. The ideal situation would be to combine a high-throughput, relatively inexpensive mapping technique with rapid identification of SSR loci in mapped regions of interest. For this reason, we coupled the high-throughput technique of AFLP mapping with subsequent direct targeting of SSRs identified in AFLP-marked regions of interest. This approach relied on the availability of peach bacterial artificial chromosome (BAC) library resources. We present examples of using this strategy to rapidly identify SSR loci tightly linked to two important, simply inherited traits in peach (Prunus persica (L.) Batsch): root-knot nematode resistance and control of the evergrowing trait. SSRs developed in this study were also tested for their transportability in other Prunus species and in apricots.  相似文献   

11.

Gene-derived simple sequence repeats (genic SSRs), also known as functional markers, are generally superior to random markers because they are located in genes and therefore may affect gene expression or function. However, extremely limited genic SSRs are available for tree peony. We used the functional gene sequences available from Paeonia to develop genic SSRs. A total of 132 SSR loci were identified from 35 cDNA sequences, of which trinucleotide (58, 43.9%) and hexanucleotide repeat (37, 28.0%) were dominant. Moreover, 121 primer pairs were successfully designed and synthesized, of which 49 primer pairs (40.5%) provided efficient and reliable amplification. By screening 16 tree peony varieties, we developed eight polymorphic genic SSRs with 37 alleles, ranging from 2 to 11 for each marker. Transferability analysis indicated that 100% of the genic SSRs could be amplified in eight other Paeonia samples. Based on eight polymorphic genic SSRs and 12 polymorphic EST-SSRs developed by predecessors, the molecular identity of 190 tree peony cultivars was constructed by capillary electrophoresis. The results showed that 146 alleles and 338 genotypes were detected, with 2–13 alleles and 3–36 genotypes for each marker. All cultivars were completely identified and exhibited unique DNA identity. In addition, the identification efficiency of different primers combinations was analyzed, and 190 germplasms were identified using 6 core primers. This study provides valuable genic SSR resources for marker-assisted selection breeding of the genus Paeonia. The DNA identity of cultivars is of great significance for the protection, utilization and management of tree peony resources.

  相似文献   

12.
Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study.  相似文献   

13.
Simple sequence repeats (SSRs) have become one of the most popular molecular markers for population genetic studies. The application of SSR markers has often been limited to source species because SSR loci are too labile to be maintained in even closely related species. However, a few extremely conserved SSR loci have been reported. Here, we tested for the presence of conserved SSR loci in acanthopterygian fishes, which include over 14 000 species, by comparing the genome sequences of four acanthopterygian fishes. We also examined the comparative genome‐derived SSRs (CG‐SSRs) for their transferability across acanthopterygian fishes and their applicability to population genetic analysis. Forty‐six SSR loci with conserved flanking regions were detected and examined for their transferability among seven nonacanthopterygian and 27 acanthopterygian fishes. The PCR amplification success rate in nonacanthopterygian fishes was low, ranging from 2.2% to 21.7%, except for Lophius litulon (Lophiiformes; 80.4%). Conversely, the rate in most acanthopterygian fishes exceeded 70.0%. Sequencing of these 46 loci revealed the presence of SSRs suitable for scoring while fragment analysis of 20 loci revealed polymorphisms in most of the acanthopterygian fishes. Population genetic analysis of Cottus pollux (Scorpaeniformes) and Sphaeramia orbicularis (Perciformes) using CG‐SSRs showed that these populations did not deviate from linkage equilibrium or Hardy–Weinberg equilibrium. Furthermore, almost no loci showed evidence of null alleles, suggesting that CG‐SSRs have strong resolving power for population genetic analysis. Our findings will facilitate the use of these markers in species in which markers remain to be identified.  相似文献   

14.
A genetic linkage map for the ectomycorrhizal basidiomycete Laccaria bicolor was constructed from 45 sib-homokaryotic haploid mycelial lines derived from the parental S238N strain progeny. For map construction, 294 simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs), amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers were employed to identify and assay loci that segregated in backcross configuration. Using SNP, RAPD and SSR sequences, the L. bicolor whole-genome sequence (WGS) assemblies were aligned onto the linkage groups. A total of 37.36 Mbp of the assembled sequences was aligned to 13 linkage groups. Most mapped genetic markers used in alignment were colinear with the sequence assemblies, indicating that both the genetic map and sequence assemblies achieved high fidelity. The resulting matrix of recombination rates between all pairs of loci was used to construct an integrated linkage map using JoinMap. The final map consisted of 13 linkage groups spanning 812 centiMorgans (cM) at an average distance of 2.76 cM between markers (range 1.9-17 cM). The WGS and the present linkage map represent an initial step towards the identification and cloning of quantitative trait loci associated with development and functioning of the ectomycorrhizal symbiosis.  相似文献   

15.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

16.
Creeping bentgrass (Agrostis stolonifera L.) is a versatile, cross-pollinated, temperate and perennial turfgrass species. It occurs naturally in a wide variety of habitats and is also cultivated on golf courses, bowling greens and tennis courts worldwide. Isozymes and amplified fragment length polymorphisms (AFLPs) have been used to determine genetic diversity, and restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNA (RAPDs) were used to construct a genetic linkage map of this species. In the current report, we developed and characterized 215 unique genomic simple sequence repeat (SSR) markers in creeping bentgrass. The SSRs reported here are the first available markers in creeping bentgrass to date. Eight hundred and eighteen alleles were amplified by 215 SSR loci, an average of 3.72 alleles per locus. Fifty-nine per cent of those alleles segregated in a 1:1 Mendelian fashion (P > 0.05). Twenty-two per cent had a distorted segregation ratio (P ≤ 0.05). These SSR markers will be useful for assessing genetic diversity in creeping bentgrass and will be important for the development of genetic linkage maps and identifying quantitative trait loci. These markers could enhance breeding programmes by improving the efficiency of selection techniques.  相似文献   

17.
Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.  相似文献   

18.
To examine the performance and information content of different marker systems, comparative assessment of population genetic diversity was undertaken in nine populations of Athyrium distentifolium using nine genomic and 10 expressed sequence tag (EST) microsatellite (SSR) loci, and 265 amplified fragment length polymorphism (AFLP) loci from two primer combinations. In range-wide comparisons (European vs. North American populations), the EST-SSR loci showed more reliable amplification and produced more easily scorable bands than genomic simple sequence repeats (SSRs). Genomic SSRs showed significantly higher levels of allelic diversity than EST-SSRs, but there was a significant correlation in the rank order of population diversities revealed by both marker types. When AFLPs, genomic SSRs, and EST-SSRs are considered, comparisons of different population diversity metrics/markers revealed a mixture of significant and nonsignificant rank-order correlations. However, no hard incongruence was detected (in no pairwise comparison of populations did different marker systems or metrics detect opposingly significant different amounts of variation). Comparable population pairwise estimates of F(ST) were obtained for all marker types, but whilst absolute values for genomic and EST-SSRs were very similar (F(ST) = 0.355 and 0.342, respectively), differentiation was consistently higher for AFLPs in pairwise and global comparisons (global AFLP F(ST) = 0.496). The two AFLP primer combinations outperformed 18 SSR loci in assignment tests and discriminatory power in phenetic cluster analyses. The results from marker comparisons on A. distentifolium are discussed in the context of the few other studies on natural plant populations comparing microsatellite and AFLP variability.  相似文献   

19.
Construction of a reference linkage map for melon.   总被引:19,自引:0,他引:19  
A map of melon (Cucumis melo L.) with 411 markers (234 RFLPs, 94 AFLPs, 47 RAPDs, 29 SSRs, five inter-SSRs, and two isozymes) and one morphological trait (carpel number) was constructed using the F2 progeny of a cross between the Korean accession P1161375 and the Spanish melon type 'Pinyonet Piel de Sapo'. RFLPs were obtained using 212 probes from different genomic and cDNA melon libraries, including 16 Arabidopsis ESTs, 13 Cucumis known genes, and three resistant gene homologues. Most loci (391) mapped to 12 major linkage groups, spanning a total genetic distance of 1197 cM, with an average map interval of 3 cM/marker. The remaining 21 loci (six RAPDs and 15 AFLPs) were not linked. A majority (66%) of the markers were codominant (RFLPs, SSRs, and isozymes), making them easily transferable to other melon crosses. Such markers can be used as a reference, to merge other melon and cucumber maps already constructed. Indeed, some of them (23 SSRs, 14 RFLPs, one isozyme, and one morphological trait) could act as anchor points with other published cucurbit maps.  相似文献   

20.
Three kinds of genetic markers including simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs) and sequence characterized amplified regions (SCARs) were developed from Aphanomyces euteiches. Of 69 loci tested, seven SSR, two SNP and two SCAR markers were codominantly polymorphic. These codominant markers and dominant markers described herein will facilitate population genetic and evolutionary studies of this important plant pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号