首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Enhanced DNA repair synthesis in hyperacetylated nucleosomes   总被引:10,自引:0,他引:10  
We have investigated the level of "early" DNA repair synthesis in nucleosome subpopulations, varying in histone acetylation, from normal human fibroblasts treated with sodium butyrate. We find that repair synthesis occurring during the first 30 min after UV irradiation is significantly enhanced in hyperacetylated mononucleosomes. Nucleosomes with an average of 2.3 acetyl residues/H4 molecule contained approximately 1.8-fold more repair synthesis than nucleosomes with an average of 1.5 or 1.0 acetyl residues/H4 molecule. Fractionation of highly acetylated nucleosomes by two-dimensional gel electrophoresis yielded an additional 2.0-fold enrichment of repair synthesis in nucleosomes containing 2.7 acetyl residues/H4 molecule as compared to nucleosomes containing 1.9 acetyl residues/H4 molecule. This enhanced repair synthesis is associated primarily with nucleosome core regions and does not appear to result from increased UV damage in hyperacetylated chromatin. In addition, the distribution of repair synthesis within nucleosome core DNA from hyperacetylated chromatin is nonrandom, showing a bias toward the 5' end which is similar to that obtained for bulk (unfractionated) chromatin. These results provide strong evidence that enhanced repair occurs within nucleosome cores of hyperacetylated chromatin in butyrate-treated human cells. Finally, pulse-chase experiments demonstrate that the association of enhanced repair synthesis with hyperacetylated nucleosomes is transient, lasting only about 12 h after UV damage.  相似文献   

11.
The expression, replication and repair of eukaryotic genomes require the fundamental organizing unit of chromatin, the nucleosome, to be unwrapped and disassembled. We have developed a quantitative model of nucleosome dynamics which provides a fundamental understanding of these DNA processes. We calibrated this model using results from high precision single molecule nucleosome unzipping experiments, and then tested its predictions for experiments in which nucleosomes are disassembled by the DNA mismatch recognition complex hMSH2-hMSH6. We found that this calibrated model quantitatively describes hMSH2-hMSH6 induced disassembly rates of nucleosomes with two separate DNA sequences and four distinct histone modification states. In addition, this model provides mechanistic insight into nucleosome disassembly by hMSH2-hMSH6 and the influence of histone modifications on this disassembly reaction. This model''s precise agreement with current experiments suggests that it can be applied more generally to provide important mechanistic understanding of the numerous nucleosome alterations that occur during DNA processing.  相似文献   

12.
13.
14.
The yeast nucleosome assembly protein 1 (yNap1) plays a role in chromatin maintenance by facilitating histone exchange as well as nucleosome assembly and disassembly. It has been suggested that yNap1 carries out these functions by regulating the concentration of free histones. Therefore, a quantitative understanding of yNap1-histone interactions also provides information on the thermodynamics of chromatin. We have developed quantitative methods to study the affinity of yNap1 for histones. We show that yNap1 binds H2A/H2B and H3/H4 histone complexes with low nm affinity, and that each yNap1 dimer binds two histone fold dimers. The yNap1 tails contribute synergistically to histone binding while the histone tails have a slightly repressive effect on binding. The (H3/H4)(2) tetramer binds DNA with higher affinity than it binds yNap1.  相似文献   

15.
16.
The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号