首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the consequences of nuclear DNA damage have been well studied, the exact consequences of acute and selective mitochondrial DNA (mtDNA) damage are less understood. DNA damaging chemotherapeutic drugs are known to activate p53-dependent apoptosis in response to sustained nuclear DNA damage. While it is recognized that whole-cell exposure to these drugs also damages mtDNA, the specific contribution of mtDNA damage to cellular degeneration is less clear. To examine this, we induced selective mtDNA damage in neuronal axons using microfluidic chambers that allow for the spatial and fluidic isolation of neuronal cell bodies (containing nucleus and mitochondria) from the axons (containing mitochondria). Exposure of the DNA damaging drug cisplatin selectively to only the axons induced mtDNA damage in axonal mitochondria, without nuclear damage. We found that this resulted in the selective degeneration of only the targeted axons that were exposed to DNA damage, where ROS was induced but mitochondria were not permeabilized. mtDNA damage-induced axon degeneration was not mediated by any of the three known axon degeneration pathways: apoptosis, axon pruning, and Wallerian degeneration, as Bax-deficiency, or Casp3-deficiency, or Sarm1-deficiency failed to protect the degenerating axons. Strikingly, p53, which is essential for degeneration after nuclear DNA damage, was also not required for degeneration induced with mtDNA damage. This was most evident when the p53-deficient neurons were globally exposed to cisplatin. While the cell bodies of p53-deficient neurons were protected from degeneration in this context, the axons farthest from the cell bodies still underwent degeneration. These results highlight how whole cell exposure to DNA damage activates two pathways of degeneration; a faster, p53-dependent apoptotic degeneration that is triggered in the cell bodies with nuclear DNA damage, and a slower, p53-independent degeneration that is induced with mtDNA damage.Subject terms: Cell biology, Neuroscience  相似文献   

2.
In the mid to late 1990's several groups identified DNA damage-dependent focal accumulations in nuclei of both DNA repair factors and the phosphorylated form of the histone variant H2A.X. The term "repair foci" has since been used to describe these protein accumulations. As a molecular marker for DNA damage, they have been immensely useful in the study of signal transduction pathways triggered by DNA damage while aiding in the identification of new factors involved in DNA repair. In spite of their importance, many other changes in the nuclear landscape correlate with DNA damage and repair processes. These include dramatic changes in chromatin ultrastructure and epigenetic modifications, which occur at the site of DNA breaks as well as globally throughout the nucleus. Besides chromatin, DNA damage also affects the dynamic behaviour, morphology and biochemical composition of various subnuclear domains, including the nucleolus, promyelocytic leukemia (PML) nuclear bodies and Cajal bodies. These changes in the nuclear landscape, the topic of this review, appear to be intimately linked to the cellular response to DNA damage and may prove as useful as repair foci in elucidating mechanisms of DNA repair.  相似文献   

3.
Protein arginine methyltransferases (PRMTs) are responsible for symmetric and asymmetric methylation of arginine residues of nuclear and cytoplasmic proteins. In the nucleus, PRMTs belong to important chromatin modifying enzymes of immense functional significance that affect gene expression, splicing and DNA repair. By time-lapse microscopy we have studied the sub-cellular localization and kinetics of PRMT1 after inhibition of PRMT1 and after irradiation. Both transiently expressed and endogenous PRMT1 accumulated in cytoplasmic bodies that were located in the proximity of the cell nucleus. The shape and number of these bodies were stable in untreated cells. However, when cell nuclei were microirradiated by UV-A, the mobility of PRMT1 cytoplasmic bodies increased their, size was reduced, and they disappeared within approximately 20 min. The same response occurred after γ-irradiation of the whole cell population, but with delayed kinetics. Treatment with PRMT1 inhibitors induced disintegration of these PRMT1 cytoplasmic bodies and prevented formation of 53BP1 nuclear bodies (NBs) that play a role during DNA damage repair. The formation of 53BP1 NBs was not influenced by PRMT1 over-expression. Taken together, we show that PRMT1 concentrates in cytoplasmic bodies, which respond to DNA injury in the cell nucleus, and to treatment with various PRMT1 inhibitors.  相似文献   

4.
Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) responds to a variety of stress stimuli and controls cell fates such as cell cycle entrance, apoptosis and senescence. Stimuli such as ultraviolet irradiation and chemical reagents that damage genomic DNA induce the activation of the SAPK/JNK signaling pathway. However, it is unclear how the signal arising in the nucleus owing to DNA damage is transmitted to SAPK/JNK in the cytoplasm. Here, we report that the nuclear components Daxx and Ras-association domain family 1C (RASSF1C) link DNA damage to SAPK/JNK activation in HeLa cells. In response to DNA damage, Daxx localized in promyelocytic leukaemia-nuclear bodies (PML-NBs) undergoes ubiquitination and degradation. RASSF1C, a tumor suppressor and newly identified binding partner of Daxx, is constitutively anchored by Daxx in PML-NBs but is released from the nucleus when Daxx is degraded. This released RASSF1C translocates to cytoplasmic microtubules and participates in the activation of SAPK/JNK. Our data define a novel mechanism by which the Daxx-RASSF1C complex in PML-NBs couples nuclear DNA damage to the cytoplasmic SAPK/JNK signaling pathway.  相似文献   

5.
Upon damage of DNA in eukaryotic cells, several repair and checkpoint proteins undergo a dramatic intranuclear relocalization, translocating to nuclear foci thought to represent sites of DNA damage and repair. Examples of such proteins include the checkpoint kinase ATR (ATM and Rad3-related) as well as replication protein A (RPA), a single-stranded DNA binding protein required in DNA replication and repair. Here, we used a microscopy-based approach to investigate whether the damage-induced translocation of RPA is an active process regulated by ATR. Our data show that in undamaged cells, ATR and RPA are uniformly distributed in the nucleus or localized to promyelocytic leukemia protein (PML) nuclear bodies. In cells treated with ionizing radiation, both ATR and RPA translocate to punctate, abundant nuclear foci where they continue to colocalize. Surprisingly, an ATR mutant that lacks kinase activity fails to relocalize in response to DNA damage. Furthermore, this kinase-inactive mutant blocks the translocation of RPA in a cell cycle-dependent manner. These observations demonstrate that the kinase activity of ATR is essential for the irradiation-induced release of ATR and RPA from PML bodies and translocation of ATR and RPA to potential sites of DNA damage.  相似文献   

6.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   

7.
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.  相似文献   

8.
The role of p53 in mediating nitric oxide (NO)-induced cell death remains uncertain. The exogenous NO donor S-nitrosoglutathione (GSNO) produced a concentration-dependent reduction in cell viability in embryonic chick cardiomyocytes in culture. Western blotting and immunocytochemistry for p53 showed that p53 was increased in whole cell lysates by GSNO: 0.001 mM GSNO led to 1.3 +/- 0.5-fold increase compared to control, and significantly (p < 0.05) increased to 1.6 +/- 0.2-fold after 0.01 mM GSNO. Higher GSNO concentrations did not further increase p53 protein expression despite producing significant increases in cell death. The p53 inhibitor pifithrin did not block GSNO-induced cell death. GSNO induced morphological changes of DNA fragmentation, nuclear condensation, and cell shrinkage. Pifithrin failed to block these morphologic changes, while it antagonized the similar cellular changes induced by adriamycin, which operates in part through p53. NO induced a concentration-dependent DNA damage. When assessed by the comet assay, the damage was 2.1 +/- 0.3-fold and 2.6 +/- 0.5-fold more than the control following 0.01 mM and 1.0 mM GSNO treatments, respectively. The DNA damage was not reduced by treatment with the pifithrin, which markedly reduced DNA damage induced by adriamycin. There was no p53 translocation to mitochondria, any major cytochrome c release from mitochondria, or change in mitochondrial membrane potential. Furthermore, cyclosporin A, which inhibits mitochondrial pore opening and cytochrome c loss, did not alter NO-induced cell death. Translocation of p53 from the cytosol to the nucleus occurred with a maximal increase of 2.9-fold in the nucleus following 1.0 mM GSNO for 24 h. These data indicate that in cardiomyocytes, NO induced marked DNA damage and translocation of p53 to the nucleus, suggesting that p53 is involved in the cellular response to NO, perhaps to modulate the genomic response to NO-induced cellular toxicity. NO-induced cell death, however, operates through p53-independent pathways, including a mitochondrial apoptotic pathway.  相似文献   

9.
Irradiation of individual cell nuclei with charged-particle microbeams requires accurate identification and localization of cells using Hoechst staining and UV illumination before computer-monitored localization of each cell. Using Fourier-transform infrared microspectroscopy (FT-IRM), we investigated whether the experimental conditions used for cell recognition induce cellular changes prior to irradiation and compared biochemical changes and DNA damage after targeted and nontargeted irradiation with alpha particles delivered by macro- or microbeams, using gamma radiation as a reference. Molecular damage in single HaCaT cells was studied by means of FT-IRM and comet assay (Gault et al., Int. J. Radiat. Biol. 81, 767-779, 2005). Hoechst 33342-stained HaCaT cells were exposed to single doses of 2 Gy (239)Pu alpha particles from a broad-beam irradiator, five impacted alpha particles from a microbeam irradiator, or 6 Gy gamma rays from (137)Cs, each of which resulted in about 5% clonogenic survival. FT-IRM of control cells indicated that Hoechst binding to nuclear DNA induced subtle changes in DNA conformation, and its excitation under UV illumination induced a dramatic shift of the DNA conformation from A to B as well as major DNA damage as measured by the comet assay. Comparison of the FT-IRM spectra of cells exposed to gamma rays or alpha particles specifically targeted to the nucleus, alpha particles from a broad-beam irradiator revealed spectral changes corresponding to all changes in constitutive bases in nucleic acids, suggesting oxidative damage in these bases, as well as structural damage in the deoxyribose-phosphate backbone of DNA and the osidic structure of nucleic acids. Concomitantly, spectral changes specific to protein suggested structural modifications. Striking differences in IR spectra between targeted microbeam- and nontargeted macrobeam-irradiated cells indicated greater residual unrepaired or misrepaired damage after microbeam irradiation. This was confirmed by the comet assay data. These results show that FT-IRM, together with the comet assay, is useful for assessing direct radiation-induced damage to nucleic acids and proteins in single cells and for investigating the effects of radiation quality. Significantly, FT-IRM revealed that Hoechst 33342 binding to DNA and exposure to UV light induce a dramatic change in DNA conformation as well as DNA damage. These findings suggest that fluorochrome staining should be avoided in studies of ionizing radiation-induced bystander effects based on charged-particle microbeam irradiation. An alternative cell nucleus recognition system that avoids nuclear matrix damage and its possible contribution to propagation of biological effects from irradiated cells to neighboring nontargeted cells needs to be developed.  相似文献   

10.
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.  相似文献   

11.
核纤层蛋白是一种存在于真核细胞核膜下的中间丝纤维蛋白,是细胞核中重要的骨架蛋白,对维持细胞核的结构和功能具有重要作用。其基因突变会引起一系列的遗传性疾病,称为核纤层蛋白病。这些疾病在细胞水平表现出氧化应激和DNA损伤的特征,提示核纤层蛋白在氧化应激和DNA损伤反应中具有重要作用。本文主要就A型核纤层蛋白在氧化应激、DNA损伤反应中的作用机制进行综述。  相似文献   

12.
13.
Nuclear apoptotic changes: an overview   总被引:11,自引:0,他引:11  
Apoptosis is a form of active cell death essential for morphogenesis, development, differentiation, and homeostasis of multicellular organisms. The activation of genetically controlled specific pathways that are highly conserved during evolution results in the characteristic morphological features of apoptosis that are mainly evident in the nucleus. These include chromatin condensation, nuclear shrinkage, and the formation of apoptotic bodies. The morphological changes are the result of molecular alterations, such as DNA and RNA cleavage, post-translational modifications of nuclear proteins, and proteolysis of several polypeptides residing in the nucleus. During the last five years our understanding of the process of apoptosis has dramatically increased. However, the mechanisms that lead to apoptotic changes in the nucleus have been only partially clarified. Here, we shall review the most recent findings that may explain why the nucleus displays these striking modifications. Moreover, we shall take into consideration the emerging evidence about apoptotic events as a trigger for the generation of autoantibodies to nuclear components.  相似文献   

14.
Dynamics of DNA replication factories in living cells   总被引:27,自引:0,他引:27       下载免费PDF全文
DNA replication occurs in microscopically visible complexes at discrete sites (replication foci) in the nucleus. These foci consist of DNA associated with replication machineries, i.e., large protein complexes involved in DNA replication. To study the dynamics of these nuclear replication foci in living cells, we fused proliferating cell nuclear antigen (PCNA), a central component of the replication machinery, with the green fluorescent protein (GFP). Imaging of stable cell lines expressing low levels of GFP-PCNA showed that replication foci are heterogeneous in size and lifetime. Time-lapse studies revealed that replication foci clearly differ from nuclear speckles and coiled bodies as they neither show directional movements, nor do they seem to merge or divide. These four dimensional analyses suggested that replication factories are stably anchored in the nucleus and that changes in the pattern occur through gradual, coordinated, but asynchronous, assembly and disassembly throughout S phase.  相似文献   

15.
During cell growth and motility in crowded tissues or interstitial spaces, cells must integrate multiple physical and biochemical environmental inputs. After a number of recent studies, the view of the nucleus as a passive object that cells have to drag along has become obsolete, placing the nucleus as a central player in sensing some of these inputs. In the present review, we will focus on changes in nuclear shape caused by external and internal forces. Depending on their magnitude, nuclear deformations can generate signaling events that modulate cell behavior and fate, or be a source of perturbations or even damage, having detrimental effects on cellular functions. On very large deformations, nuclear envelope rupture events become frequent, leading to uncontrolled nucleocytoplasmic mixing and DNA damage. We will also discuss the consequences of repeated compromised nuclear integrity, which can trigger DNA surveillance mechanisms, with critical consequences to cell fate and tissue homeostasis.  相似文献   

16.
17.
Linking lipids to chromatin   总被引:5,自引:0,他引:5  
  相似文献   

18.
19.
Alic Koopmans 《Genetica》1977,47(3):187-195
A study is made of nuclear division in Nematospora coryli, a pathogenic yeast. The DNA of cells (grown on a V-8-medium) was stained with leuco-basic fuchsin (Feulgen test) at pH 3.5. After budding has started the rounded nucleus elongates and some differentiation into chromosomes is perceptible. A few slides suggest the number of chromosomes being 4. After some time the nucleus appears to have duplicated. This nucleus migrates towards the isthmus between mother cell and bud. In the isthmus, or just in front of it, the two daughter nuclei proceed to disjoin and move along each other to opposite directions. One daughter nucleus moves into the bud; the other one migrates back into the mother cell.Samples from synchronously growing cultures show that a fraction of the young yeast cells are destined to grow out to asci, in which after about 6 hours the presence of bivalents seems highly probable. The succeeding nuclear divisions take place in the same way as described for the vegetative cells and stop when the majority of the enlarged asci contain 8 nuclei.Problems of haploidy and diploidy are discussed.Small, densely stained bodies are observed in certain vegetative and some meiotic stages. As these bodies contain DNA, their function and possible homology with centrioles is discussed.  相似文献   

20.
休克淋巴液对大鼠肺微血管内皮细胞的损伤作用   总被引:7,自引:1,他引:6  
无菌条件下复制大鼠重症失血性休克模型,引流肠系膜淋巴液或收集门静脉血,同时,引流正常淋巴液、正常门静脉血。以不同处理因素与原代培养的第三代肺微血管内皮细胞(PMVEC)共同孵育,通过光镜、透射电镜、扫描电镜观察细胞形态及超微结构,MTT法检测不同终浓度的休克淋巴液及正常淋巴液对PMVEC增殖的影响;流式细胞仪检测PMVEC周期变化;同时进行细胞核DNA电泳分析。结果表明,休克淋巴液对PMVEC具有损伤作用,表现为细胞收缩、核固缩等,扫描电镜可观察到凋亡小体;随着休克淋巴液终浓度增加,PMVEC的增殖活力逐渐降低,显著低于正常淋巴液组;4%终浓度的休克淋巴液作用PMVEC 4h后,G0-G1期细胞比值增大,S G2-M期细胞比值下降,其他处理因素无明显变化,同时细胞核DNA电泳形成典型的阶梯状电泳图谱(DNA ladder)。结果提示,休克淋巴液可导致PMVEC形态学及超微结构损伤,同时抑制细胞增殖、影响细胞周期、诱导细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号