首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radical S-adenosyl-l-methionine (SAM) superfamily is a widely distributed group of iron-sulfur containing proteins that exploit the reactivity of the high energy intermediate, 5'-deoxyadenosyl radical, which is produced by the reductive cleavage of SAM, to carry-out complex radical-mediated transformations. The reactions catalyzed by radical SAM enzymes range from simple group migrations to complex reactions in protein and RNA modification. This review will highlight three radical SAM enzymes that catalyze reactions involving modified guanosines in the biosynthesis pathways of the hypermodified tRNA base wybutosine; secondary metabolites of 7-deazapurine structure, including the hypermodified tRNA base queuosine; and the redox cofactor F(420). This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

2.
The role of S-adenosylmethionine (SAM) as a precursor to organic radicals, generated by one-electron reduction of SAM and subsequent fission to form 5'-deoxyadenosyl radical and methionine, has been known for some time. Only recently, however, has it become apparent how widespread such enzymes are, and what a wide range of chemical reactions they catalyze. In the last few years several new SAM radical enzymes have been identified. Spectroscopic and kinetic investigations have begun to uncover the mechanism by which an iron sulfur cluster unique to these enzymes reduces SAM to generate adenosyl radical. Most recently, the first X-ray structures of SAM radical enzymes, coproporphyrinogen-III oxidase, and biotin synthase have been solved, providing a structural framework within which to interpret mechanistic studies.  相似文献   

3.
A class of enzymatic reactions of S-adenosylmethionine (AdoMet) has recently been recognized, in which AdoMet plays a novel role by initiating free radical formation through the intermediate formation of 5'-deoxyadenosine-5'-yl, the 5'-deoxyadenosyl radical. The reactions are in this way related to adenosylcobalamin-dependent processes, which also depend on the formation of the 5'-deoxyadenosyl radical as an intermediate. The mechanisms by which the 5'-deoxyadenosyl radical is generated by the AdoMet- and adenosylcobalamin-dependent enzymes are very different. However, the functions of the 5'-deoxyadenosyl radical are similar in that in all cases it abstracts hydrogen from a substrate to form 5'-deoxyadenosine and a substrate-derived free radical. In this paper, the role of the 5'-deoxyadenosyl radical in the reaction of the adenosylcobalamin-dependent reactions will be compared with its role in the AdoMet-dependent reaction of lysine 2,3-aminomutase. The mechanism by which AdoMet is cleaved to the 5'-deoxyadenosyl radical at enzymatic sites will also be discussed.  相似文献   

4.
Phosphorothioation (PT) involves the replacement of a nonbridging phosphate oxygen on the DNA backbone with sulfur. In bacteria, the procedure is both sequence- and stereo-specific. We reconstituted the PT reaction using purified DndCDE from Salmonella enterica and IscS from Escherichia coli. We determined that the in vitro process of PT was oxygen sensitive. Only one strand on a double-stranded (ds) DNA substrate was modified in the reaction. The modification was dominant between G and A in the GAAC/GTTC conserved sequence. The modification between G and T required the presence of PT between G and A on the opposite strand. Cysteine, S-adenosyl methionine (SAM) and the formation of an iron-sulfur cluster in DndCDE (DndCDE-FeS) were essential for the process. Results from SAM cleavage reactions support the supposition that PT is a radical SAM reaction. Adenosine triphosphate (ATP) promoted the reaction but was not essential. The data and conclusions presented suggest that the PT reaction in bacteria involves three steps. The first step is the binding of DndCDE-FeS to DNA and searching for the modification sequence, possibly with the help of ATP. Cysteine locks DndCDE-FeS to the modification site with an appropriate protein conformation. SAM triggers the radical SAM reaction to complete the oxygen-sulfur swapping.  相似文献   

5.
S-Adenosylmethionine (SAM) is protective against a variety of toxic agents that promote oxidative stress. One mechanism for this protective effect of SAM is increased synthesis of glutathione. We evaluated whether SAM is protective via possible antioxidant-like activities. Aerobic Hepes-buffered solutions of Fe2+ spontaneously oxidize and consume O2 with concomitant production of reactive oxygen species and oxidation of substrates to radical products, e.g., ethanol to hydroxyethyl radical. SAM inhibited this oxidation of ethanol and inhibited aerobic Fe2+ oxidation and consumption of O2. SAM did not regenerate Fe2+ from Fe3+ and was not consumed after incubation with Fe2+. SAM less effectively inhibited aerobic Fe2+ oxidation in the presence of competing chelating agents such as EDTA, citrate, and ADP. The effects of SAM were mimicked by S-adenosylhomocysteine, but not by methionine or methylthioadenosine. SAM did not inhibit Fe2+ oxidation by H2O2 and was a relatively poor inhibitor of the Fenton reaction. Lipid peroxidation initiated by Fe2+ in liposomes was associated with Fe2+ oxidation; these two processes were inhibited by SAM. However, SAM did not show significant peroxyl radical scavenging activity. SAM also inhibited the nonenzymatic lipid peroxidation initiated by Fe2+ + ascorbate in rat liver microsomes. These results suggest that SAM inhibits alcohol and lipid oxidation mainly by Fe2+ chelation and inhibition of Fe2+ autoxidation. This could represent an important mechanism by which SAM exerts cellular protective actions and reduces oxidative stress in biological systems.  相似文献   

6.
7.
Radical SAM enzymes have only recently been recognized as an ancient family sharing an unusual radical-based reaction mechanism. This late appreciation is due to the extreme oxygen sensitivity of most radical SAM enzymes, making their characterization particularly arduous. Nevertheless, realization that the novel apposition of the established cofactors S-adenosylmethionine and [4Fe-4S] cluster creates an explosive source of catalytic radicals, the appreciation of the sheer size of this previously neglected family, and the rapid succession of three successfully solved crystal structures within a year have ensured that this family has belatedly been noted. In this review, we report the characterization of two enzymes: the established radical SAM enzyme, HemN or oxygen-independent coproporphyrinogen III oxidase from Escherichia coli, and littorine mutase, a presumed radical SAM enzyme, responsible for the conversion of littorine to hyoscyamine in plants. The enzymes are compared to other radical SAM enzymes and in particular the three reported crystal structures from this family, HemN, biotin synthase and MoaA, are discussed.  相似文献   

8.
The enzyme cofactor and essential vitamin biotin is biosynthesized in bacteria, fungi, and plants through a pathway that culminates with the addition of a sulfur atom to generate the five-membered thiophane ring. The immediate precursor, dethiobiotin, has methylene and methyl groups at the C6 and C9 positions, respectively, and formation of a thioether bridging these carbon atoms requires cleavage of unactivated CH bonds. Biotin synthase is an S-adenosyl-l-methionine (SAM or AdoMet) radical enzyme that catalyzes reduction of the AdoMet sulfonium to produce 5'-deoxyadenosyl radicals, high-energy carbon radicals that can directly abstract hydrogen atoms from dethiobiotin. The available experimental and structural data suggest that a [2Fe-2S](2+) cluster bound deep within biotin synthase provides a sulfur atom that is added to dethiobiotin in a stepwise reaction, first at the C9 position to generate 9-mercaptodethiobiotin, and then at the C6 position to close the thiophane ring. The formation of sulfur-containing biomolecules through a radical reaction involving an iron-sulfur cluster is an unprecedented reaction in biochemistry; however, recent enzyme discoveries suggest that radical sulfur insertion reactions may be a distinct subgroup within the burgeoning Radical SAM superfamily. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

9.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

10.
Activation of glycyl radical enzymes (GREs) by S-adenosylmethonine (AdoMet or SAM)-dependent enzymes has long been shown to proceed via the reductive cleavage of SAM. The AdoMet-dependent (or radical SAM) enzymes catalyze this reaction by using a [4Fe-4S] cluster to reductively cleave AdoMet to form a transient 5'-deoxyadenosyl radical and methionine. This radical is then transferred to the GRE, and methionine and 5'-deoxyadenosine are also formed. In contrast to this paradigm, we demonstrate that generation of a glycyl radical on the B(12)-independent glycerol dehydratase by the glycerol dehydratase activating enzyme results in formation of 5'-deoxy-5'-(methylthio)adenosine and not 5'-deoxyadenosine. This demonstrates for the first time that radical SAM activases are also capable of an alternative cleavage pathway for SAM.  相似文献   

11.
The report presented here demonstrates that scavenging of chlorpromazine cation radical (an absorption maximum = 530 nm) by ascorbic acid or glutathione can be kinetically and stoichiometrically analyzed at pH 1.5 but not at pH 3.0 and 6.0 using a conventional absorption spectrophotometer. The cation radical decays spontaneously about 10 and 200 times faster at pH 3.0 and 6.0, respectively, than at pH 1.5.At pH 1.5, ascorbic acid scavenges the cation radical faster than glutathione does, and the following different scavenging mechanisms are postulated from the above kinetic and stoichiometric analysis. The reaction of the cation radical with ascorbic acid is second order. The ascorbic acid free radical, which decays mainly by dismutation, is generated by the bimolecular reaction. In the case of glutathione, on the other hand, about 70% of the scavenged cation radical disappears through free radical chain reactions that glutathione thiol anion and glutathione free radical probably initiate. The remaining (about 30%) disappears by conjugation with glutathione. It may be due to relative nonreactivity of ascorbic acid free radical that free radical chain reactions, found commonly in radical chemistry, do not occur in the scavenging reaction by ascorbic acid.Based on the above results, the physiological scavenging mechanisms of the cation radical by the two reducing substances are discussed briefly.  相似文献   

12.
Yokoyama K  Ohmori D  Kudo F  Eguchi T 《Biochemistry》2008,47(34):8950-8960
BtrN is a radical SAM ( S-adenosyl- l-methionine) enzyme that catalyzes the oxidation of 2-deoxy- scyllo-inosamine (DOIA) into 3-amino-2,3-dideoxy- scyllo-inosose (amino-DOI) during the biosynthesis of 2-deoxystreptamine (DOS) in the butirosin producer Bacillus circulans. Recently, we have shown that BtrN catalyzes the transfer of a hydrogen atom at C-3 of DOIA to 5'-deoxyadenosine, and thus, the reaction was proposed to proceed through the hydrogen atom abstraction by the 5'-deoxyadenosyl radical. In this work, the BtrN reaction was analyzed by EPR spectroscopy. A sharp double triplet EPR signal was observed when the EPR spectrum of the enzyme reaction mixture was recorded at 50 K. The spin coupling with protons partially disappeared by reaction with [2,2- (2)H 2]DOIA, which unambiguously proved the observed signal to be a radical on C-3 of DOIA. On the other hand, the EPR spectrum of the [4Fe-4S] cluster of BtrN during the reaction showed a complex signal due to the presence of several species. Comparison of signals derived from a [4Fe-4S] center of BtrN incubated with various combinations of products (5'-deoxyadenosine, l-methionine, and amino-DOI) and substrates (SAM and DOIA) indicated that the EPR signals observed during the reaction were derived from free BtrN, a BtrN-SAM complex, and a BtrN-SAM-DOIA complex. Significant changes in the EPR signals upon binding of SAM and DOIA suggest the close interaction of both substrates with the [4Fe-4S] cluster.  相似文献   

13.
《Free radical research》2013,47(4-6):197-216
This review is concerned with an overall survey of reactivity in free radical chemistry. A concise classification is given of elementary reaction steps which can be combined in different ways to account for overall chemical transformations: radical forming reactions, radical transformations, and radical destroying reactions. From this is derived the concept of the chain reaction which leads on to an up-to-date theory for understanding reactivity in free radical processes. Finally, a few aspects of autoxidation are discussed.  相似文献   

14.
The amine buffer Tris slowly reduces tetranitromethane (TNM) to the nitroform anion in a non-accelerating reaction. The amine buffers HEPES and MOPS also (slowly) react with TNM but the dialkylaminoalkyl radicals formed from these two buffers undergo further reactions resulting in a rapid, accelerating, free radical chain process whereby the amine is oxidized and TNM reduced. The chemical functionality in any reaction component, not necessarily the buffer, required for this radical chain mechanism is >N-CH<. In the presence of such groups, the quantification of superoxide by TNM is impossible.  相似文献   

15.
This review is concerned with an overall survey of reactivity in free radical chemistry. A concise classification is given of elementary reaction steps which can be combined in different ways to account for overall chemical transformations: radical forming reactions, radical transformations, and radical destroying reactions. From this is derived the concept of the chain reaction which leads on to an up-to-date theory for understanding reactivity in free radical processes. Finally, a few aspects of autoxidation are discussed.  相似文献   

16.
Methyltransfer reactions are some of the most important reactions in biological systems. Glycine N-methyltransferase (GNMT) catalyzes the S-adenosyl-l-methionine- (SAM-) dependent methylation of glycine to form sarcosine. Unlike most SAM-dependent methyltransferases, GNMT has a relatively high value and is weakly inhibited by the product S-adenosyl-l-homocysteine (SAH). The major role of GNMT is believed to be the regulation of the cellular SAM/SAH ratio, which is thought to play a key role in SAM-dependent methyltransfer reactions. Crystal structures of GNMT complexed with SAM and acetate (a potent competitive inhibitor of Gly) and the R175K mutated enzyme complexed with SAM were determined at 2.8 and 3.0 A resolutions, respectively. With these crystal structures and the previously determined structures of substrate-free enzyme, a catalytic mechanism has been proposed. Structural changes occur in the transitions from the substrate-free to the binary complex and from the binary to the ternary complex. In the ternary complex stage, an alpha-helix in the N-terminus undergoes a major conformational change. As a result, the bound SAM is firmly connected to protein and a "Gly pocket" is created near the bound SAM. The second substrate Gly binds to Arg175 and is brought into the Gly pocket. Five hydrogen bonds connect the Gly in the proximity of the bound SAM and orient the lone pair orbital on the amino nitrogen (N) of Gly toward the donor methyl group (C(E)) of SAM. Thermal motion of the enzyme leads to a collision of the N and C(E) so that a S(N)2 methyltransfer reaction occurs. The proposed mechanism is supported by mutagenesis studies.  相似文献   

17.
In the early days, radical enzyme reactions that use S-adenosylmethionine (SAM) coordinated to an Fe-S cluster, which Perry Frey described as a “poor man''s coenzyme B12,” were believed to be relatively rare chemical curiosities. Today, bioinformatics analyses have revealed the wide prevalence and sheer numbers of radical SAM enzymes, conferring superfamily status. In this thematic minireview series, the JBC presents six articles on radical SAM enzymes that accomplish wide-ranging chemical transformations. We learn that despite the diversity of the reactions catalyzed, family members share some common structural and mechanistic themes. Still in its infancy, continued explorations promise to be fertile grounds for discoveries that will undoubtedly further broaden our understanding of the catalytic repertoire and deepen our understanding of the chemical strategies used by radical SAM enzymes.  相似文献   

18.
The radical S-adenosylmethionine (SAM) superfamily enzymes reductively cleave SAM to produce a highly reactive 5ˊ-deoxyadenosyl (dAdo) radical, which in most cases abstracts a hydrogen from the substrate and initiates highly diverse reactions. In rare cases, the dAdo radical can add to a sp2 carbon to result in the production an adenosylated product. These radical SAM-dependent adenosylation reactions are present in natural product biosynthetic pathways and can be achieved by using unnatural substrate analogs containing olefin or aryl moieties. This Opinion provides a focused perspective on this emerging type of biochemistry and discusses its potential use in bioengineering and biocatalysis.  相似文献   

19.
Bacterial spores possess an enormous resistance to ultraviolet (UV) radiation. This is largely due to a unique DNA repair enzyme, Spore Photoproduct Lyase (SP lyase) that repairs a specific UV-induced DNA lesion, the spore photoproduct (SP), through an unprecedented radical-based mechanism. Unlike DNA photolyases, SP lyase belongs to the emerging superfamily of radical S-adenosyl-l-methionine (SAM) enzymes and uses a [4Fe–4S]1+ cluster and SAM to initiate the repair reaction. We report here the first crystal structure of this enigmatic enzyme in complex with its [4Fe–4S] cluster and its SAM cofactor, in the absence and presence of a DNA lesion, the dinucleoside SP. The high resolution structures provide fundamental insights into the active site, the DNA lesion recognition and binding which involve a β-hairpin structure. We show that SAM and a conserved cysteine residue are perfectly positioned in the active site for hydrogen atom abstraction from the dihydrothymine residue of the lesion and donation to the α-thyminyl radical moiety, respectively. Based on structural and biochemical characterizations of mutant proteins, we substantiate the role of this cysteine in the enzymatic mechanism. Our structure reveals how SP lyase combines specific features of radical SAM and DNA repair enzymes to enable a complex radical-based repair reaction to take place.  相似文献   

20.
4-Hydroxyphenylacetate decarboxylase (4Hpad) is an Fe/S cluster containing glycyl radical enzyme (GRE), which catalyses the last step of tyrosine fermentation in clostridia, generating the bacteriostatic p-cresol. The respective activating enzyme (4Hpad-AE) displays two cysteine-rich motifs in addition to the classical S-adenosylmethionine (SAM) binding cluster (RS cluster) motif. These additional motifs are also present in other glycyl radical activating enzymes (GR-AE) and it has been postulated that these orthologues may use an alternative SAM homolytic cleavage mechanism, generating a putative 3-amino-3-carboxypropyl radical and 5′-deoxy-5′-(methylthio)adenosine but not a 5′-deoxyadenosyl radical and methionine. 4Hpad-AE produced from a codon-optimized synthetic gene binds a maximum of two [4Fe–4S]2+/+ clusters as revealed by EPR and Mössbauer spectroscopy. The enzyme only catalyses the turnover of SAM under reducing conditions, and the reaction products were identified as 5′-deoxyadenosine (quenched form of 5′-deoxyadenosyl radical) and methionine. We demonstrate that the 5′-deoxyadenosyl radical is the activating agent for 4Hpad through p-cresol formation and correlation between the production of 5′-deoxyadenosine and the generation of glycyl radical in 4Hpad. Therefore, we conclude that 4Hpad-AE catalyses a classical SAM-dependent glycyl radical formation as reported for GR-AE without auxiliary clusters. Our observation casts doubt on the suggestion that GR-AE containing auxiliary clusters catalyse the alternative cleavage reaction detected for glycerol dehydratase activating enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号