首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The biological synthesis methods have been emerging as a promising new approach for production of nanoparticles due to their simplicity and non-toxicity. In the present study, spores of Bacillus athrophaeus were used to achieve the objective of developing a green synthesis method of silver nanoparticles. Enzyme assay revealed that the spores and their heat inactivated forms (microcapsules) were highly active and their enzymatic contents differed from the vegetative cells. Laccase, glucose oxidase, and alkaline phosphatase activities were detected in the dormant forms, but not in the vegetative cells. Although no nanoparticle was produced by active cells of B. athrophaeus, both spores and microcapsules were efficiently capable of reducing the silver ions (Ag+) to elemental silver (Ag0) leading to the formation of nanoparticles from silver nitrate (AgNO3). The presence of biologically synthesized silver nanoparticles was determined by obtaining broad spectra with maximum absorbance at 400 nm in UV–visible spectroscopy. The X-ray diffraction analysis pattern revealed that the nanoscale particles have crystalline nature with various topologies, as confirmed by transmission electron microscopy (TEM). The TEM micrograph showed the nanocrystal structures with dimensions ranging from 5 to 30 nm. Accordingly, the spore mixture could be employed as a factory for detoxification of heavy metals and subsequent production of nanoparticles. This research introduces an environmental friendly and cost effective biotechnological process for the extracellular synthesis of silver nanoparticles using the bacterial spores.  相似文献   

2.

Biofabrication of nanoparticles via the principles of green nanotechnology is a key issue addressed in nanobiotechnology research. There is a growing need for development of a synthesis method for producing biocompatible stable nanoparticles in order to avoid adverse effects in medical applications. We report the use of simple and rapid biosynthesis method for the preparation of gold nanoparticles using Macrophomina phaseolina (Tassi) Goid, a soil-borne pathogen. The effect of pH and temperature on the synthesis of gold nanoparticles by M. phaseolina was also assessed. Different techniques like UV-Visible Spectroscopy, Transmission Electron Microscopy (TEM), Dynamic light scattering (DLS) measurements, Fourier transform infrared (FTIR), and EDX were used to characterize the gold nanoparticles. The movement of these gold nanoparticles inside Escherichia coli (ATCC11103) along with effect on growth and viability was evaluated. The biogenic gold nanoparticle was synthesized at 37 °C temperature and neutral pH. UV-Visible Spectroscopy, TEM, EDX, and DLS measurements confirm the formation of 14 to 16 nm biogenic gold nanoparticles. FTIR substantiates the presence of protein capping on Macrophomina phaseolina-mediated gold nanoparticles. The non-toxicity of gold nanoparticles was confirmed by the growth and viability assay while the TEM images validated the entry of gold nanoparticles without disrupting the structural integrity of E. coli. Biogenic method for the synthesis of nanoparticles using fungi is novel, efficient, without toxic chemicals. These biogenic gold nanoparticles themselves are nontoxic to the microbial cells and offer a better substitute for drug delivery system.

  相似文献   

3.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

4.
Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV–Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV–Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.  相似文献   

5.
The need for more effective antimicrobial agent and propitious application of nanotechnology in therapeutics and diagnostics has prompted the research on ecofriendly synthesis of silver nanoparticles. The objective of present study was to investigate the antibacterial and antifungal activity of biologically synthesized silver nanoparticles. The silver nanoparticles were synthesized by extracellular method, using soil bacteria Kocuria rosea. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM) and fourier transformation infrared spectroscopy (FTIR). On the basis of TEM analysis, the synthesized nanoparticles were found to be spherical with an average size of 30–50 nm. The biologically synthesized silver nanoparticles showed significant antimicrobial activity against pathogens.  相似文献   

6.
Due to the increasing popularity of using plant extract in the synthesis of nanoparticles, this study presented the synthesis of platinum nanoparticles using Fumariae herba extract. The formation of platinum nanoparticles was confirmed by UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with EDS profile. Transmission electron micrograph presented the hexagonal and pentagonal shape of the synthesized nanoparticles sized about 30 nm. Moreover, platinum nanoparticles presented good catalytic properties in the reduction of methylene blue and crystal violet.  相似文献   

7.

Silver nanoparticles are the most desirable nanoparticles broadly used in diverse fields. This study intends to investigate the anticancer properties of synthesized silver/Lactobacillus rhamnosus GG nanoparticles (Ag-LNPs) as a reducing and stabilizing agent in the synthesis process. To prepare silver/Lactobacillus rhamnosus GG nanoparticles, 1 mg/ml cell lysate of Lactobacillus rhamnosus GG and 1 mM silver nitrate solution were mixed and incubated for 72 h. XRD, FTIR, and TEM methods were used for nanoparticle characterization. MTT assay and annexin/PI staining were employed to analyze the toxicity and apoptotic cells levels of Ag-LNPs, respectively. TEM showed that these nanoparticles are spherical shaped about 233 nm in size. FTIR spectroscopy demonstrated that Ag-LNPs were functionalized with biomolecules. XRD pattern showed high purity and face-centered crystal structure of Ag-LNPs. MTT assay revealed that the percentages of HT-29 live cells significantly reduced in the high concentration of Ag-LNPs. Annexin/PI staining showed that these nanoparticles could lead HT-29 cells to apoptosis. This study showed the new Ag-LNP-synthesizing method using Lactobacillus rhamnosus GG as a cost-effective and efficient approach. Also, it showed that these nanoparticles can be considered as a potential active agent for biomedical applications and drug delivery due to their anticancer activities.

  相似文献   

8.
Here, we report a simple, eco-friendly and inexpensive approach for the synthesis of zinc oxide nanoparticles (ZnO NPs) using Coptidis Rhizoma. The ZnO NPs were characterized by UV–visible absorption spectroscopy, FTIR, SEM-EDX, TGA, TEM, SAED and XRD. TEM images confirmed the presence of spherical and rod shaped ZnO NPs in the range of 2.90–25.20 nm. Green synthesized ZnO NPS exhibited moderate antibacterial activity against Gram-positive and Gram-negative bacteria and excellent DPPH free radical scavenging activity. Synthesized ZnO NPs had no toxic effects on the RAW 264.7 cell line.  相似文献   

9.

Phytofabricated green synthesis of zinc oxide (ZnO) nanoparticles using different plant extracts of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera, and Tamarindus indica for biological applications has been reported. ZnO nanoparticles were also synthesized by chemical method to compare the efficiency of the green synthesized nanoparticles. FT-IR spectra confirmed the functional groups involved in the green synthesis of ZnO nanoparticles and the powder XRD patterns of the ZnO nanoparticles revealed pure wurtzite structure with preferred orientation at (100) reflection plane. SEM and TEM analysis revealed the spherical shape of the synthesized ZnO nanoparticles with the particle size between 54 and 27 nm. The antioxidant activity was evaluated by five different free radical scavenging assays. The present study also intends to screen α-amylase and α-glucosidase activity of ZnO nanoparticles synthesized using natural sources, which may minimize the toxicity and side effects of the inhibitors used to control diabetes. The ZnO nanoparticles synthesized using T. indica extract displayed remarkable antioxidant and antidiabetic activities.

  相似文献   

10.
Accurate control of size, composition, morphology, and stability, and the use of environmentally friendly procedures are highly desirable for the synthesis of nanoparticles. Here is a report on the use of Vitis californica leaf broth for the synthesis of gold nanoparticles. The morphology of the particles formed consists of a mixture of gold nanotriangles and spheres with fcc (111) structure. At lower concentrations of the extract, formation of triangular-shaped particles is found to dominate, while at higher concentrations, almost spherical particles alone are observed. The investigations made on the surface enhanced Raman scattering activity of these nanoparticles using 2-aminothiophenol and crystal violet as probe molecules are discussed in detail. The synthesized nanoparticles displayed efficient antibacterial activity against the tested gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.  相似文献   

11.
Green synthesis of nanoparticles using various plant materials opens a new scope for the phytochemist and discourages the use of toxic chemicals. In this article, we report an eco-friendly and low-cost method for the synthesis of silver nanoparticles (AgNPs) using Andean blackberry fruit extracts as both a reducing and capping agent. The green synthesized AgNPs were characterized by various analytical instruments like UV–visible, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The formation of AgNPs was analyzed by UV–vis spectroscopy at λmax = 435 nm. TEM analysis of AgNPs showed the formation of a crystalline, spherical shape and 12–50 nm size, whereas XRD peaks at 38.04°, 44.06°, 64.34° and 77.17° confirmed the crystalline nature of AgNPs. FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. Furthermore, it was found that the AgNPs showed good antioxidant efficacy (>78%, 0.1 mM) against 1,1-diphenyl-2-picrylhydrazyl. The process of synthesis is environmentally compatible and the synthesized AgNPs could be a promising candidate for many biomedical applications.  相似文献   

12.
Tiopronin (N-(2-mercaptopropionyl)glycine)-protected gold nanoparticles (TPAu) were cross-linked to collagen via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling. On average, each TPAu forms eight amide bonds with collagen lysine moieties. The resulting gels were studied with environmental SEM, TEM, micro-DSC, and TNBS assay. The porous structure of collagen was significantly altered by cross-linking, resulting in the reduction of the pore size from ca. 140 to <1 microm depending on the concentration of nanoparticles. The collagenase biodegradation assay showed improved stability of cross-linked material. The cell viability assay, CellTiter96, indicates that the gold nanoparticles are not toxic at the concentrations used in gel synthesis. This new material has potential for the delivery of small molecule drugs as well as Au nanoparticles for photothermal therapies, imaging, and cell targeting.  相似文献   

13.
Kim JW  Kim LU  Kim CK 《Biomacromolecules》2007,8(1):215-222
Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.  相似文献   

14.
Biosynthesis of gold nanoparticles with small size and biostability is very important and used in various biomedical applications. There are lot of reports for the synthesis of gold nanoparticles by the addition of reducing agent and stabilizing agent. In the present study we have synthesized gold nanoparticles, with a particle size ranging from 5 to 15 nm, using Zingiber officinale extract which acts both as reducing and stabilizing agent. Z. officinale extract is reported to be a more potent anti-platelet agent than aspirin. Therefore, green synthesis of gold nanoparticles with Z. officinale extract, as an alternative to chemical synthesis, is beneficial from its biological and medical applications point of view, because of its good blood biocompatibility and physiological stability. The formation and size distribution of gold nanoparticles were confirmed by dynamic light scattering (DLS), UV–vis spectrophotometer and transmission electron microscopy (TEM). Gold nanoparticles synthesized using citrate and Z. officinale extract demonstrated very low protein adsorption. Both nanoparticles were non platelet activating and non complement activating on contact with whole human blood. They also did not aggregate other blood cells, however, nanoparticles synthesised with Z. officinale extract was highly stable at physiological condition compared to citrate capped nanoparticles, which aggregated. Thus the usage of nanoparticles, synthesized with Z. officinale extract, as vectors for the applications in drug delivery, gene delivery or as biosensors, where a direct contact with blood occurs is justified.  相似文献   

15.
In the present work, a green synthesis of Metal Oxide nanoparticles was demonstrated using the freshly prepared aqueous extract of the immature fruit of Cocos nucifera and the MO nanoparticles were characterized by the analytical techniques such as UV–vis, FT-IR, XRD, SEM, TEM and EDAX. Characterization techniques confirmed that the biomolecules involved in the formation of nanoparticles and also they stabilized the nanoparticles. The synthesized MO nanoparticles were used as catalysts for the reduction of aromatic aldehydes. The reduction was done at mild reaction conditions using ammonium formate as a green hydrogen donor and the corresponding alcohols were obtained in 2–24 h with excellent yields. The reduction reaction was optimized using various solvents, loading of catalyst and at different temperatures.  相似文献   

16.
Laboratory bioassays (48h duration, 25+/-1 degrees C) were used to determine the toxicity of Bacillus thuringiensis var. israelensis (B.t.i.) and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi, a major pest of rice in southern Australia. Bioassays were conducted using different combinations of larval ages and densities to determine if these factors affected toxicity. The effects of temperature and substrate type on B.t.i. toxicity were also investigated. Tests were conducted using a commercial B.t.i. formulation (VectoBac WDG, 3000ITU/mg), a spore/crystal mixture derived from the VectoBac WDG strain, and VectoLex WDG, a commercial B. sphaericus formulation (650ITU/mg). VectoBac WDG was highly toxic to fourth instar C. tepperi in bioassays using a sand substrate (LC(50) 0.46mg/L, older larvae); younger fourth instar larvae were more susceptible (LC(50) 0.20mg/L). Increasing larval densities (from 10 to 30 per bioassay cup) increased LC(50) values for both age groups, significantly so in the case of older larvae (higher density LC(50) 0.80mg/L). Use of a soil substrate increased the LC(50) value (older larvae, 10 per cup) to 0.99mg/L. Similar differences in toxicity relative to larval age and substrate type were found in bioassays using the B.t.i. spore/crystal mixture. VectoBac WDG and the spore/crystal mixture both showed similar (approximately 6-fold) declines in activity between 30 and 17.5 degrees C. At lower temperatures (between 17.5 and 15 degrees C), activity of the spore/crystal mixture declined much more rapidly than that of VectoBac WDG. VectoLex WDG showed very low toxicity to C. tepperi larvae, and the overall impact of larval age and density was relatively minor (LC(50) values 1062-1340mg/L). Autoclaving VectoLex WDG did not substantially reduce its toxicity (LC(50) 1426mg/L), suggesting that formulation additives (i.e., surfactants and other adjuvants) are responsible for much of the toxicity occurring at the high product concentrations required to cause C. tepperi mortality. Whilst VectoLex WDG was ineffective against C. tepperi, VectoBac WDG has the potential to provide selective control of this rice pest at economically viable application rates.  相似文献   

17.
近年来,纳米硒凭借其良好的导电、光热以及抗癌等特性,在纳米技术、生物医学以及环境修复等诸多领域得到广泛应用。实验选择前期筛选得到的贪铜杆菌Cupriavidus sp. SHE,文中探究了该菌株的细胞上清液、全细胞以及胞内提取物合成纳米硒的能力,并对细胞上清液合成的纳米硒进行形貌表征与官能团分析,最后选取革兰氏阳性菌假单胞菌Pseudomonas sp. PI1和革兰氏阴性菌大肠杆菌Escherichia coli BL21进行抗菌实验。结果表明,菌株Cupriavidussp.SHE的细胞上清液、全细胞以及胞内提取物均具有合成纳米硒的能力。对于菌株Cupriavidus sp. SHE细胞上清液而言,在该实验中,研究范围内其合成纳米硒的最佳条件是SeO2浓度为5 mmol/L,pH为7。透射电子显微镜结果表明合成的纳米硒颗粒主要为球形,平均直径为196nm。X射线衍射结果表明合成的纳米硒晶体类型为六方形结构。傅立叶转换红外光谱和聚丙烯酰胺凝胶电泳结果表明纳米硒表面有小分子蛋白结合,可能参与了纳米硒的合成和稳定过程。此外,抗菌实验表明菌株Cupriavidus sp. SHE细胞上清液合成的纳米硒颗粒对菌株E.coli BL21和Pseudomonas sp. PI1均无明显的抗菌活性。综上,该研究表明菌株Cupriavidus sp.SHE在细胞上清液中产生的蛋白类物质在其合成纳米硒的过程中发挥了重要作用,合成的生物纳米硒颗粒无毒且生物相容性良好,未来在生物医学等领域具有较好的应用潜力。  相似文献   

18.
Numerous bacteria, fungi, yeasts and viruses have been exploited for biosynthesis of highly structured metal sulfide and metallic nanoparticles. Haloarchaea (salt-loving archaea) of the third domain of life Archaea, on the other hand have not yet been explored for nanoparticle synthesis. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (AgNPs) by the haloarchaeal isolate Halococcus salifodinae BK3. The culture on adaptation to silver nitrate exhibited growth kinetics similar to that of the control. NADH-dependent nitrate reductase was involved in silver tolerance, reduction, synthesis of AgNPs, and exhibited metal-dependent increase in enzyme activity. The AgNPs preparation was characterized using UV–visible spectroscopy, XRD, TEM and EDAX. The XRD analysis of the nanoparticles showed the characteristic Bragg peaks of face-centered cubic silver with crystallite domain size of 22 and 12 nm for AgNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The average particle size obtained from TEM analysis was 50.3 and 12 nm for AgNPs synthesized in NTYE and HNB, respectively. This is the first report on the synthesis of silver nanoparticles by haloarchaea.  相似文献   

19.
The mixed Cu and Zn oxide (Cu/ZnO) nanoparticles have been synthesized using Brassica juncea L. plants. The synthesized Cu/ZnO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS). It was found that the synthesized Cu/ZnO nanoparticles were corresponding to the Cu(0.05)Zn(0.95)O structure. The shapes of the synthesized ZnO nanoparticles were nonuniform, but the CuO nanoparticles showed a spherical shape. The CuO nanoparticles entered in the structures of ZnO nanoparticles. An average size of 97 nm was obtained for Cu(0.05)Zn(0.95)O. The Cu(0.05)Zn(0.95)O nanoparticles were pure. The method for synthesis of Cu(0.05)Zn(0.95)O nanoparticles using Cu hyperaccumulator (B. juncea) plants constitutes a new insight into the recycling of hyperaccumulator and provides a novel route for further development of green nanostructure syntheses.  相似文献   

20.
Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号