首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Microcystin-LR (MCLR) is a liver-specific toxin known as a tumour promoter in experimental animals. Its mechanisms of hepatotoxicity have been well documented; however, the mechanisms of other effects, in particular those related to its genotoxicity, are not well understood. In our previous studies, we showed that MCLR-induced DNA strand breaks are transiently present and that the damage is mediated by reactive oxygen species (ROS). In this study, we show that exposure of HepG2 cells to non-cytotoxic doses of MCLR-induced time-dependent alterations in the level of intracellular reduced glutathione (GSH). These comprised a rapid initial decrease followed by a gradual increase, reaching a maximum after 6h of exposure, before returning to the control level after 8h. During the first 4h, expression of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, increased, indicating an increased rate of de novo synthesis of GSH. The most important observation of this study, combined with the results of our previous studies is the correlation between the time course of alterations of intracellular GSH content and the formation and disappearance of MCLR-induced DNA damage. When the intracellular GSH level was reduced, MCLR-induced DNA damage was observed to increase. Later, when the level of intracellular GSH was normal or elevated, new DNA damage was not induced and existing damage was repaired. To confirm the role of GSH system in MCLR-induced genotoxicity, the intracellular GSH level was moderated by pre-treatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and with N-acetylcysteine (NAC), a GSH precursor. Pre-treatment with BSO dramatically increased the susceptibility of HepG2 cells to MCLR-induced DNA damage, while pre-treatment with NAC almost completely prevented MCLR-induced DNA damage. Thus, intracellular GSH is shown to play a critical role in the cellular defence against MCLR-induced DNA damage in HepG2 cells.  相似文献   

3.
Hormonal regulation of glutathione efflux   总被引:3,自引:0,他引:3  
The efflux of GSH has been shown previously to be a saturable process in both isolated rat hepatocytes and perfused liver, suggesting a carrier-mediated transport mechanism. The possibility in hormonal regulation of this process has been raised by recent reports. Our present work examined the role of hormones known to affect intracellular signal transduction mechanisms on GSH efflux in cultured rat hepatocytes and perfused rat livers. We found that cAMP-dependent factors, such as cholera toxin (CT), dibutyryl cAMP, forskolin, and glucagon all stimulated GSH efflux in cultured rat hepatocytes. The efflux kinetics were compared in cultured cells incubated with or without CT; the stimulation of GSH efflux was related to a near doubling of the Vmax while exhibiting no significant alteration of the Km. The increase in intracellular cAMP level associated with the threshold for this stimulatory effect was 25% above control. The stimulatory effect of CT could not be blocked by cyclohexamide pretreatment or reversed by colchicine treatment. The stimulatory effect of glucagon was abolished in the presence of ouabain but not in the presence of barium. On the other hand, hormones which act through Ca2+ and protein kinase C, such as phenylephrine and vasopressin, had no effect on GSH efflux in the cultured cells. In the perfused liver model, glucagon (10 nM) and dibutyryl cAMP (8 microM) stimulated sinusoidal GSH efflux to 130 and 144% of control values, respectively, and increased bile flow while not affecting biliary GSH efflux. Finally, the physiological significance of glucagon-mediated stimulation of sinusoidal GSH efflux was assessed by both plasma GSH and glucose levels in response to in vivo glucagon infusion. The threshold dose of glucagon for significant increase in plasma GSH (5.21 pmol/min) was lower than for glucose (15.61 pmol/min). At the highest glucagon infusion rate (261 pmol/min), plasma GSH level doubled while glucose level increased 80%. In conclusion, increased cAMP stimulates GSH efflux in cultured rat hepatocytes and perfused livers. The stimulatory effect of cAMP is exerted at the sinusoidal pole and appears to be mediated by hyperpolarization of hepatocytes by stimulation of Na(+)-K(+)-ATPase. In vivo studies confirmed the importance of cAMP-mediated stimulation of sinusoidal GSH efflux as it resulted in significant elevation of the plasma GSH level.  相似文献   

4.
Microcystin-LR (MCLR) is a liver-specific toxin known as a tumour promoter in experimental animals. Its mechanisms of hepatotoxicity have been well documented; however, the mechanisms of other effects, in particular those related to its genotoxicity, are not well understood. In our previous studies, we showed that MCLR-induced DNA strand breaks are transiently present and that the damage is mediated by reactive oxygen species (ROS). In this study, we show that exposure of HepG2 cells to non-cytotoxic doses of MCLR-induced time-dependent alterations in the level of intracellular reduced glutathione (GSH). These comprised a rapid initial decrease followed by a gradual increase, reaching a maximum after 6 h of exposure, before returning to the control level after 8 h. During the first 4 h, expression of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, increased, indicating an increased rate of de novo synthesis of GSH. The most important observation of this study, combined with the results of our previous studies is the correlation between the time course of alterations of intracellular GSH content and the formation and disappearance of MCLR-induced DNA damage. When the intracellular GSH level was reduced, MCLR-induced DNA damage was observed to increase. Later, when the level of intracellular GSH was normal or elevated, new DNA damage was not induced and existing damage was repaired. To confirm the role of GSH system in MCLR-induced genotoxicity, the intracellular GSH level was moderated by pre-treatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and with N-acetylcysteine (NAC), a GSH precursor. Pre-treatment with BSO dramatically increased the susceptibility of HepG2 cells to MCLR-induced DNA damage, while pre-treatment with NAC almost completely prevented MCLR-induced DNA damage. Thus, intracellular GSH is shown to play a critical role in the cellular defence against MCLR-induced DNA damage in HepG2 cells.  相似文献   

5.
A case is presented of an infertile male whose spermatozoa showed low mobility, a high percentage of irregular large heads and a variable number of tails (between 0 and 4). In the spermatozoa with several tails each axoneme, surrounded by its own outer fibres and mitochondrial sheath, arose from its own basal plate. Throughout the middle piece of every spermatozoon all the axonemes were arranged in parallel and were enclosed by the same plasma membrane. Usually, at the beginning of the principal piece, the axonemes became separated. At this level each of them constituted a different tail. In most spermatozoa the fine structure of the tail or tails was normal. The alterations of the inner structure of the tail or tails was normal. The alterations of the inner structure of the flagellum observed in some spermatozoa (enlargement of the fibrous sheath, duplication of the outer fibres and of some peripheral doublets) were independent of the number of tails present. In some cases, an intracytoplasmic coiling of the tail or tails could be observed.  相似文献   

6.
The effect of in vitro incubation on the level of the intracellular nucleophile, glutathione (GSH), in adult Schistosoma mansoni was investigated. The GSH levels of freshly collected adult male and female parasites were 8.5 +/- 2.5 and 2.7 +/- 0.7 nmol/10 worms, respectively, as determined by an enzymatic assay. Twenty-four-hour incubation of unpaired males in RPMI-1640 medium at 37 C resulted in a 1.7-fold increase (P less than 0.001) in GSH level that remained elevated for at least 7 days. The increase was dependent on exogenous L-cystine, suggesting that it was due to biosynthesis of GSH. Biosynthesis in male S. mansoni was confirmed by isolating [3H] GSH from parasites incubated in medium containing L-[3H] cystine or [3H] glycine. In contrast to unpaired males, the GSH level of paired males as well as that of unpaired or paired females did not increase after 24 hr in vitro. When males that had been incubated unpaired for 24 hr were allowed to couple in vitro with freshly collected females, their GSH level fell to that of continuously paired males. These observations provide evidence that in vitro female schistosomes can influence the physiology of the male.  相似文献   

7.
Glutathione (GSH) plays an important role in the cellular defense against (per-)oxidative stress. The capacity of this cellular defense system may be related to the oxygen tension, cells are normally subjected to in vivo; therefore, we studied the de novo synthesis of glutathione, and the redox turnover under peroxidative stress, in human umbilical vein and artery endothelial cells (HUVEC, HUAEC) and human skin fibroblasts. De novo synthesis in these cell types was studied in vitro by measuring the time course of intracellular GSH recovery after depletion with diamide. For fibroblasts, the initial rate of de novo synthesis after GSH depletion was twice that of the endothelial cell strains. In the endothelial cells (HUVEC, HUAEC) the original intracellular GSH level is reached within 40 min. while in the same time span, the GSH level in fibroblasts returned to 75% of control level. The activity of the hexose monophosphate shunt (HMS) was determined under oxidative stress as a measure for the coupled redox turnover of intracellular GSH. Under control conditions the HMS in endothelial cells was twice as high as in fibroblasts. Cumene hydroperoxide (40 microM) induced a three-fold increase in HMS in both HUVEC and HUAEC, while fibroblasts exhibited an increase of 83%. During the same peroxidative stress, the intracellular GSH concentration of HUVEC, HUAEC and fibroblasts stayed at control level. So with respect to GSH metabolism there were no differences between the two endothelial cell strains. In comparison with the endothelial cells, the fibroblasts were less susceptible toward oxidative stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Changes in the level of glutathione (GSH), the turnover rate, and gamma-glutamyltransferase (GGT) activity were examined in newborn, weanling, and adult male Wistar rats, the objective being to elucidate the mechanisms which control the hepatic GSH level during maturation as well as under conditions of different degrees of protein ingestion. The hepatic GGT activity in the newborn rats was high at birth, decreased within a few days to 1 to 2% of the initial level, and remained unchanged thereafter, when these rats were fed a normal diet after 3 weeks of age. In contrast, the hepatic GSH level increased 3-4-fold while total GGT activity in the kidney increased 6-8-fold. When weanling rats were fed a low protein diet (containing 10% soy protein) for 3 weeks, the hepatic GSH level decreased markedly while the GGT activity increased 5-6-fold. The turnover rate of hepatic GSH also increased, as determined by the use of buthionine sulfoximine, a specific inhibitor of GSH synthesis; a value of 2.1 h was obtained in comparison with 3.5 h for that of rats fed the normal laboratory chow (CRF-1). On the other hand, feeding adult rats on the low protein diet resulted in a marked decrease in hepatic GSH level with no effect on either hepatic or renal GGT activity. These results together with other observations may suggest that GSH translocated out of liver cells in the newborn rats is degraded mainly by these cells, while the tripeptide secreted by hepatocytes of adult rats is metabolized predominantly in extrahepatic tissues, such as the kidney.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
-Tocopherol is a lipophilic vitamin that exhibits an antioxidative activity. The purpose of this study was to clarify the roles of -tocopherol in the regulation of intracellular glutathione (GSH) levels in HaCaT keratinocytes. When HaCaT keratinocytes were cultivated with -tocopherol for 24 h, the intracellular GSH was increased at every concentration of -tocopherol tested. Furthermore, the HaCaT keratinocytes cultured with -tocopherol at 50 μM for 24 h exhibited resistance against H 2 O 2 . However, a short exposure of HaCaT keratinocytes to -tocopherol for 1 h did not influence either the GSH level or the resistance to H 2 O 2 . These findings suggest that GSH, which is inductively synthesized by -tocopherol, effectively reduces exogenous oxidative stress. To evaluate the effect of -tocopherol on the GSH level, BSO, which is a typical inhibitor of γ-glutamylcysteine synthetase ( γ-GCS), was used. When BSO was added to HaCaT keratinocytes, no action of -tocopherol on the GSH level was observed. On the other hand, -tocopherol resulted in the up-regulation of γ-GCS-HS (heavy subunit) mRNA. In addition, water soluble -tocopherol derivatives ( -tocopherol phosphate and trolox) caused no changes in GSH level. From these results, it was concluded that -tocopherol increases the intracellular GSH level of HaCaT keratinocytes through the up-regulation of γ-GCS-HS mRNA.  相似文献   

10.
To study the relationship between glutathione and rooting, tomato seedling cuttings, grown on basal- or on auxin-supplemented media, were treated with the reduced (GSH) or oxidized (GSSG) form of this antioxidant. In turn, the consequences of the depletion of GSH pool on rooting were tested using l-buthionine sulfoximine (BSO), a specific inhibitor of GSH biosynthesis. Effects of the aforementioned treatments on rooting response were assessed. GSH treatment promoted root formation on cuttings grown on both basal- and auxin-supplemented media. Whereas GSSG did not affect the number of roots formed by cuttings grown on basal medium, it strongly enhanced the rooting stimulatory effect of auxin treatment. GSH depletion resulting from BSO application did not change the number of roots formed. All the tested compounds, namely GSH, GSSG, BSO and auxin, had a strong inhibitory effect on the elongation of regenerated roots. Supplementing the rooting medium with glutathione efficiently increased the GSH level in the rooting zones, while addition of BSO led to a strong decrease in endogenous GSH level. Neither of the treatments affected the level of GSSG. Exogenous auxin affect neither GSH nor GSSG levels in rooting zones; however, in the regenerated roots, GSH level was significantly higher when the organs were formed on auxin-supplemented medium. Patterns of GSH distribution in the roots regenerated on basal- and auxin-enriched media were studied using the GSH-specific dye monochlorobimane and confocal laser scanning microscopy. GSH was found in the root apical meristem and in the elongation zone. Auxin did not change the GSH distribution; however, the number of fluorescent cells was higher when roots were regenerated on auxin-supplemented medium.  相似文献   

11.
Glutathione plays an important role in various cellular functions including cell growth and differentiation. In the present study, cell differentiation was induced by butyrate in human colon cell line HT-29 and cellular thiol status was assessed. It was observed that butyrate-induced differentiation was associated with decrease in cellular GSH level and this was prominent at early stages of differentiation. Buthionine sulfoximine (BSO), a specific cellular GSH depleting agent, did not induce differentiation in cells but potentiated the differentiation induced by butyrate. Both BSO and butyrate individually and together inhibited cell growth. These studies suggest that cellular GSH level is modulated in butyrate-induced differentiation and decrease of GSH at the initial stage might facilitate cellular differentiation.  相似文献   

12.
The electron spin resonance signal of Tempol decays in the presence of red cells. The decay is due to reduction of oxidant, paramagnetic nitroxide group by the metabolic activity of the red cell. In normal red cells, GSH level was stable and Tempol reduction rate followed a first-order kinetics. In G6PD-deficient red cells, GSH dropped and Tempol reduction rate was slower and followed a second-order kinetics. In normal red cells, diamide reversibly oxidized GSH. First-order kinetics of Tempol reduction rate was attained after a delay time proportional to the diamide concentration and corresponding to the full regeneration of GSH. In diamide-treated G6PD deficient, and in NEM-treated, normal red cells, irreversible disappearance of GSH was followed by irreversible dose-dependent decrease in Tempol reduction rate. A correlation between GSH levels and Tempol reduction rate was observed. A correlation was also established between Tempol reduction rate and stimulation of pentosephosphate shunt activity.  相似文献   

13.
Glutathione regulates interleukin-2 activity on cytotoxic T-cells   总被引:8,自引:0,他引:8  
In this study, we examined whether and how the cellular activity of interleukin-2 (IL-2) is affected by glutathione (GSH), an important tripeptide existing in most cells. Cell culture and thymidine incorporation assay showed that addition of GSH enhanced the effect of IL-2 on the proliferation and thymidine incorporation of IL-2-dependent cytotoxic T-cells such as CTLL-2 and CT-4R. Treatment of the cells with GSH resulted in a 2-fold increase in the amount of IL-2 bound to the cells and a rapid internalization of the bound IL-2. In addition, the degradation of IL-2 in the cells was enhanced by GSH treatment. These effects of GSH were accompanied by an increase in the intracellular GSH level. L-Buthionine-(S,R)-sulfoximine, an inhibitor of de novo GSH synthesis, blunted the increase of intracellular GSH level and modulated the effect of GSH on IL-2 activity. These results suggest that GSH regulates the binding, internalization, degradation, and T-cell proliferative activity of IL-2; alterations of cellular GSH concentration may thus affect the growth and replication of IL-2-sensitive cytotoxic T-cells.  相似文献   

14.
The role of glutathione (GSH) in the differentiated state of insulin-secreting cells was studied using 2-mercaptoethanol as a means of varying intracellular GSH levels. 2-Mercaptoethanol (50 microM) caused a marked increase of GSH in two rat insulinoma cell lines, RINm5F and INS-1, the latter being dependent on the presence of 2-mercaptoethanol for survival in tissue culture. The effect of 2-mercaptoethanol on GSH was shared by other thiol compounds. Since in other cell types 2-mercaptoethanol is thought to act on cystine transport, thereby increasing the supply of cysteine for GSH synthesis, we have studied [35S]cystine-uptake in INS-1 cells. At equimolar concentrations to cystine, 2-mercaptoethanol caused stimulation of [35S]cystine-uptake. The effect persisted in the absence of extracellular Na+, probably suggesting the involvement of the Xc- carrier system. INS-1 cells with a high GSH level, cultured 48 h with 2-mercaptoethanol, displayed a lower cystine uptake than control cells with a low GSH content. The effect of variations of the GSH levels on short-term insulin release was studied. No alteration of glyceraldehyde-induced or KCl-induced insulin release in RINm5F cells was detected. In contrast, both in islets and in INS-1 cells, a high GSH level was associated with a slightly lower insulin release. In INS-1 cells the effect was more marked at low glucose concentrations, resulting in an improved stimulation of insulin secretion. On the other hand, in islets, a decrease in the incremental insulin release evoked by glucose was seen. As in other cell types, oxidized glutathione (GSSG) was less than 5% of total GSH, and in INS-1 cells no change in the GSH/GSSG ratio was detected during glucose-induced or 3-isobutyl-1-methylxanthine-induced insulin release. In conclusion, 2-mercaptoethanol-dependent INS-1 cells, as well as RINm5F cells and islets of Langerhans, display a low capacity in maintaining intracellular levels of GSH in tissue culture without extracellular thiol supplementation; 2-mercaptoethanol possibly acts by promoting cyst(e)ine transport; changes in GSH levels caused a moderate effect on the differentiated function of insulin-secreting cells.  相似文献   

15.
16.
Hydroperoxide decomposition by the NADP-glutathione system in rat liver mitochondria was analyzed. Mitochondria were found to contain high concentrations of the reduced form of glutathione (GSH) (4.32 +/- 0.50 nmol/mg) and NADPH (4.74 +/- 0.64 nmol/mg), and high activities of glutathione peroxidase and reductase. In the initial phase of the reaction, the rate of hydroperoxide decomposition was proportional to both the GSH level and the activity of GSH peroxidase. However, in the later steady state, the step of NADP reduction was rate-limiting, and the overall reaction rate was independent of the initial concentration of GSH, and activities of glutathione peroxidase and reductase. Some GSH was released from mitochondria during incubation, but the rate of the decomposition could be simply expressed as kappa [GSH]/2, where kappa is the first-order rate constant of the peroxidase and [GSH] is the intramitochondrial level of GSH in the steady state. The rate of the reaction in the steady state was also dependent on the NADPH level, its reciprocal being linearly correlated with [NADPH]-1. The rate of decomposition of hydroperoxide was influenced by the respiratory state. During state 3 respiration, the rate was greatly depressed, but was still considered to exceed by far the rate of physiological generation of hydroperoxide.  相似文献   

17.
The effects of dietary glutathione (GSH) on plasma and liver lipid concentrations were investigated with rats fed on a high cholesterol diet. When graded levels of GSH, 0.75 to 5.0%, were added to the 25% casein basal diet, the plasma total cholesterol level was significantly decreased and the HDL-cholesterol level was inversely increased in all addition levels without influence on the growth of animals except for the 5% addition level; the dietary addition of 5% GSH markedly depressed the growth and food consumption of rats and caused a slight diarrhea. Plasma triglyceride and phospholipid levels were decreased by the dietary addition of GSH. The contents of cholesterol and triglyceride in the liver were decreased as the dietary addition level of GSH was increased. The dietary addition of a mixture of glutamic acid, cysteine and glycine, or cysteine alone corresponding to 2.5% GSH resulted in a cholesterol-lowering effect which could not be distinguished from the effect of GSH in rats fed on the 25% casein diet. When 1.5% GSH was added to a low (10%) casein diet, the plasma cholesterol-lowering effect of GSH was also observed and the effect was comparable to that of cysteine. These results indicate that dietary-added GSH has a plasma and liver cholesterol-lowering efficacy and that this effect is largely attributable to the cysteine residue of GSH rather than to the tripeptide itself or the other amino acid residues.  相似文献   

18.
Selenium is a widely studied dietary anticancer agent. Among various selenium compounds, the methylated forms appear to be particularly effective in cancer prevention. Intracellular glutathione (GSH) is known to be involved in the metabolism of many methylated forms of selenium. In this study, we investigated the role of intracellular GSH in methylseleninic acid (MSeA)-induced apoptosis in human hepatoma (HepG(2)) cells. MSeA was shown to deplete intracellular GSH rapidly, preceding the typical apoptotic changes such as DNA fragmentation as measured by the TUNEL assay. When the intracellular GSH concentration was enhanced using N-acetylcysteiene (NAC) (a GSH synthesis precursor) and decreased using buthionine sufoxamine (BSO) (a GSH synthesis inhibitor), NAC markedly augmented MSeA-induced apoptosis, while BSO significantly inhibited MSeA-induced apoptosis. Different from the effect of sodium selenite, there was no measurable superoxide radical level in MSeA-treated cells. These observations suggest that intracellular GSH mainly acts as a cofactor to facilitate MSeA-induced apoptosis, while its antioxidant function becomes largely irrelevant. It is thus postulated that some cancer cells, such as liver cancer cells with higher level of intracellular GSH, would be more susceptible to MSeA cytotoxicity.  相似文献   

19.
This investigation evaluates in an in vivo system the possible correlation between the intracellular content of GSH and cysteine and thermal sensitivity and thermotolerance. The studies were performed on C3H mammary carcinomas, located on the hind paw of CBA mice. Intracellular thiols were measured by the HPLC technique and the degree of thermotolerance induction was determined from tumour growth rate studies. It was found that the intracellular GSH levels did not change significantly during thermotolerance induction, and that subtoxic hyperthermia induced a pronounced transient decrease in GSH down to 30 per cent of the control level. When the intracellular GSH level was decreased to the same extent, by pretreatment with D,L-buthionine-S-R-sulphoximine (BSO), thermotolerance was still inducible. Thus, the induction of heat-induced thermal resistance did not seem to be dependent on the intracellular GSH level. When hyperthermia and BSO were combined, the GSH levels were further reduced. Treatment with BSO slightly increased the toxicity of both thermotolerance-inducing and subtoxic hyperthermia. The cysteine concentrations increased several fold after BSO and heat treatments and contributed, under these conditions, to more than 25 per cent of the intracellular free reduced thiols. In general, there was no direct correlation between GSH and cysteine levels. It is concluded that thermotolerance induction does not depend on or cause changes in intracellular GSH levels and that subtoxic heat treatments induce a pronounced transient decrease in GSH concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号