首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The absorption maxima ( max) of the visual pigments in the ommatidia ofNotonecta glauca were found by measuring the difference spectra of single rhabdomeres after alternating illumination with two different adaptation wavelengths. All the peripheral rhabdomeres contain a pigment with an extinction maximum at 560 nm. This pigment is sensitive to red light up to wavelengths > 700 nm. In a given ommatidium in the dorsal region of the eye, the two central rhabdomeres both contain one of two pigments, either a pigment with an absorption maximum in the UV, at 345 nm, or — in neighboring rhabdoms — a pigment with an absorption maximum at 445 nm. In the ventral part of the eye only the pigment absorbing maximally in the UV was found in the central rhabdomeres. The spectral absorption properties of various types of screening-pigment granules were measured.  相似文献   

2.
Summary The spectral absorption by single ommin containing pigment granules or clusters of granules from compound eyes was measured spectrophotometrically between 300 and 700 nm. The measurements were made on fresh and fixed slices from compound eyes of Celerio euphorbiae and Vespa spec. In the visible part of the spectrum there is an absorption maximum between 540 and 550 nm, situated nearly 30 nm more towards the red than that of pure ommin in solution. A frequently found side maximum of variable height at about 450 nm is probably caused by oxidized xanthommatin occurring additionally within the granules. The absorption increases from 350 nm towards shorter wavelengths, and gradually declines between 550 and 700 nm.This work was supported partly by the Swedish Medical Research Council, Stiftelsen Gustaf och Tyra Svenssons Minne, Reservationsanslaget, and partly by the Air Force Office of Scientific Research through the European Office of Aerospace Research, OAR, United States Air Force under grant number EOOAR-68-0036.  相似文献   

3.
Summary Electroretinograms obtained in the butterfliesAglais urticae andPieris brassicae by the procedure of Fourier interferometric stimulation (FIS) were used to construct spectral sensitivity curves. These curves, representing the combined responses of several receptor types, were approximated by summation of spectral sensitivity curves for individual pigments, and the presence of these pigments was corroborated by chromatic adaptation experiments. The results show that the retina in the compound eye ofAglais urticae contains 3 photopigments, with maximal absorption at ca. 360 nm, 460 nm and 530 nm, respectively (Fig. 5). The retina in the compound eye ofPieris brassicae has two subdivisions. In the dorsal region of the eye 3 photopigments were found, with maxima at ca. 360 nm, 450 nm and 560 nm (Fig. 8). In the medioventral region pigments with essentially the same maxima are present together with an additional, fourth long-wavelength component with effective maximal absorption at ca. 620 nm (Fig. 11). Its absorption curve is considerably narrower than would be expected for a rhodopsin with the same absorption maximum, and presumably results from the spectral combination of a photopigment and a photostable screening pigment.Abbreviations FIS Fourier interferometric stimulation - WLP White-light position - ERG Electroretinogram  相似文献   

4.
Summary The pigment cells of the compound eye of the shrimps (Crangon crangon andC. allmani) were studied by electron microscopy (SEM and TEM) and microspectrophotometry. The compound eyes of these species contain light-absorbing and -reflecting pigments contained in granules, located in 5 different cells. The light absorbing pigment granules (light screen) are situated in (1) the distal pigment cells, (2) the retinular cells, (3) the basal pigment cells. The reflecting pigment granules are located in (4) the distal, and (5) the proximal reflecting pigment cells. Another innominate cell type investing the ommatidia contains vacuoles without pigment content. The innominate cell type, and the basal absorbing pigment cell (3) listed above, have not earlier been reported for a crustacean species. Measurements of the spectral absorption on sliced and squashed ommatidia show that all components of the light screen have an increased absorption in the wavelength regions 400–450 nm and 530–570 nm, probably due to xanthommatin and ommin. The spectral absorbancy of the reflecting pigment cells were not determined. Similar cells in other species are known to contain pteridines.We thank Prof. Dr. Langer, Bochum, Germany, for his kind help. The work was supported by funds from the Karolinska Institutet to Doc. G. Struwe, and grant NFR No. 2760-007 to Doc. R. Elofsson.  相似文献   

5.
ABSTRACT. To answer whether Blepharisma hyalinum is truly unpigmented, the organism must be established in culture as pointed out by Giese in 1973. Accordingly, the present study deals with B. hyalinum kept in culture since its isolation in 1975. The organism still remains colorless after growth in the dark; however, it contains cortical granules resembling pigment granules in colored species. A comparative study was therefore undertaken of B. hyalinum and B. steini; both species have a compact macronucleus, though of different shape. Crude pigment was extracted with acetone from organisms grown in the dark for three weeks and the maxima were measured by absorption. Purified pigment was obtained from TLC-plate preparations and the absorption maxima were measured after removal of lipids with chloroform. No maxima characteristic of blepharismin were found in extracts of B. hyalinum, but these were present in extracts of B. steini. Electron microscopy of the cortical region revealed membrane-bound granules in both species; these granules differed in content but not in their capacity to extrude. In B. hyalinum all granules had a homogenous electron-dense substructure; in B. steini the granules had a net-like granulated substructure of varying electron density. This difference corresponds to that published on “pigment” granules in albino and pigmented strains of B. undulans. Our conclusions are that B. hyalinum is unpigmented (and a valid separate species) and that the cortical granules may serve other functions than that of storing blepharismin.  相似文献   

6.
The absorption spectra of pigment granules in erythrocytes infected with Plasmodium vivax were examined by microspectrophotometry. Our investigations show that individual pigment granules in infected erythrocytes are different and that gradual transitional stages are found from hemoglobin to a compound with a symmetric absorption spectrum with a maximum at 442 nm. This compound is likely to be the “pure” malaria pigment. The exact nature of this pigment is not clear from the absorption curves; it is certainly not chemically pure hematin or bilirubin.  相似文献   

7.
Microspectrophotometric measurements of screening granules in Mysis relicta eyes showed that most of the granules have xanthommatin spectra (7nmax 455 nm) with selective absorption of blue light. We calculated spectral sensitivity of M.relicta eyes using screening granules absorption spectra and visual pigment absorption spectra. According to our computations the calculated spectral sensitivity curve appears to be in a good correspondence with the real spectral sensitivity.  相似文献   

8.
A membrane-bound cytochrome of the b-type (cytochrome b-560) was success-fully purified from chromatophores of the photosynthetic purple sulfur bacterium Chromatium vinosum by treatment with sodium cholate, sodium deoxycholate, sodium thiocyanate, and bacterial alkaline protease (EC 3·4·21·14) followed by gel filtration.The purified cytochrome b-560 showed the absorption maxima at 279, 412.5 and 533 nm in the oxidized form, and 427, 530 and 560 nm in the reduced form. Reduced-minus-oxidized difference millimolar absorption coefficient was 14.0 for a wavelength pair, 560 minus 540 nm.Isolated cytochrome b-560 was electrophoretically homogeneous, and its minimal molecular weight was estimated to the 13,000 by SDS polyacrylamide gel electrophoresis.The midpoint potential at pH 8.0 was –110mV, and was not dependent on the ambient pH in the pH range of 6.8 to 8.8.  相似文献   

9.
1. ERG S(lambda) were determined in dark-adapted intact preparations of 6 North American firefly species (Photinus collustrans, marginellus, pyralis, macdermotti, scintillans and Bicellonycha wickershamorum) which restrict their flashing activity to twilight hours. The curves possess narrow (1/2 bandwidth = 50-60 nm) peaks in the yellow (560-580 nm) and a shoulder in the violet (370-420 nm), with a marked attenuation (1.4-2.2 log units) of sensitivity in the green (480-530 nm) region of the spectrum (Fig. 1). Two additional species (Photuris potomaca and frontalis) which initiate flashing at twilight and continue on late into the night (twi-night) possess broad sensitivity maxima around 560 nm (Fig. 3). 2. Selective adaptation experiments isolated near-UV and yellow in P. scintillans (Fig. 2). In the dorsal frontal region of the compound eyes in P. frontalis, high sensitivity existed only in the short wavelength region (near-UV and blue) with a maximum in the blue (lambda max 435 nm) (Fig. 4). 3. The in situ MSP absorption spectrum of the screening pigments was determined in preparations of firefly retina. a) Two kinds of dark brown granules were found in the clear zone region. These granules absorb all across the spectrum with a gradual increase in optical density in the shorter wavelength region in P. pyralis (Fig. 5). b) Besides dark granules, pink-to-red colored screening pigments were present in the vicinity of the rhabdoms. The absorption spectra of these pigments determined in five species were narrow (1/2 bandwidth = 50-80 nm) with species-specific differences in their peak absorption in the green at 525 nm, 510 nm, 512 nm and 517 nm in P. scintillans, macdermotti, collustrans and pyralis, respectively (Fig. 6). A similar pigment was found in P. marginellus with a lambda max at 512 nm (Fig. 7). In all cases, transmission increased both at long and short wavelengths, but more sharply in the long wavelength region (Figs. 6 and 7). Hence each twilight-restricted species has its own unique colored screening pigment. A yellow pigment whose absorption spectrum differed from those found in genus Photinus was found in twi-night active Photuris potomaca (lambda max 461 nm) and night-active P. versicolor (lambda max 456 nm). The transmission of the Photuris pigment increased sharply only in the long wave-length region (Fig. 8).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Summary The spectral absorbance by the visual pigments in the compound eye of the mothDeilephila elpenor was determined by microphotometry. Two visual pigments and their photoproducts were demonstrated. The photoproducts are thermostable and are reconverted to the visual pigments by light. The concentrations of the visual pigments and the photoproducts at each wavelength are determined by their absorbance coefficients at this wavelength. P 525: The experimental recordings (difference spectra and spectral absorbance changes after exposure to monochromatic lights) were completely reproduced by calculations using nomograms for vertebrate rhodopsin. The identity between experimental recordings and calculations show: One visual pigment absorbs maximally at 525 nm (P 525). The resonance spectrum of the visual pigment is identical to that for a vertebrate rhodopsin (max at 525 nm). The photoproduct of this pigment absorbs maximally at 480 nm (M 480). It is similar to the acid metarhodopsin in cephalopods. The relative absorbance of P 525 to that of M 480 is 11.75. The quantum efficiency for photoconversion of P 525 to M 480 is nearly equal to that for reconversion of M 480 to P 525. Wavelengths exceeding about 570 nm are absorbed only by P 525, i. e. P 525 is completely converted to M 480. Shorter wavelengths are absorbed both by P 525 and M 480. At these wavelengths a photoequilibrium between the two pigments is formed. Maximal concentration of P 525 is obtained at about 450 nm. P 350: A second visual pigment absorbs maximally at about 350 nm (P 350), and its photoproduct at 450 to 460 nm. In the region of spectral overlap a photoequilibrium between the two pigments is formed.The visual pigment and the photoproduct are similar to those in the neuropteran insectAscalaphus.The work reported in this article was supported by Deutsche Forschungsgemeinschaft, Schwerpunktsprogramm Rezeptorphysiologie Ha 258-10, and SFB 114, by the Swedish Medical Research Council (grant no B 73-04X-104-02B), by Karolinska Institutet, and by a grant (to G. Höglund) from Deutscher Akademischer Austauschdienst.  相似文献   

11.
Summary A comparative action spectroscopical study was made on phototaxis in two genera of cryptomonads (cryptophyte flagellate algae), namely,Cryptomonas (rostratiformis) andChroomonas (nordstedtii andcoeruled). The two genera differ in their characteristic phycobilin pigmentation and, among three species, onlyChroomonas coerulea possesses an eyespot. The two species with no eyespot,Cryptomonas rostratiformis andChroomonas nordstedtii, exhibited positive phototaxis, showing very similar action spectra characterized by a broad band in the region from 450 nm to 650 nm, with an action maximum at about 560 nm; these features are essentially the same as those observed previously forCryptomonas strain CR-1. InCryptomonas rostratiformis, a small peak was also found at 280 nm in the UV-B/C region.Chroomonas coerulea, with eyespot, did not exhibit distinct positive phototaxis in a wide spectral region at any given, even very low, light intensity, but exhibited negative phototaxis of spectral sensitivity maximal at 400–450 nm. These results indicate that the positive phototaxis ofCryptomonas (rostratiformis and CR-1) andChroomonas nordstedtii is mediated by the same, yet unidentified photoreceptor(s).Chroomonas nordstedtii, possessing no phycoerythrin absorbing at 545 nm, also exhibits positive phototaxis at ca. 560 nm, and this result disfavors the so far proposed possibility that the positive phototaxis of the cryptophytes may be mediated by phycobilin pigments. On the other hand, the spectral characteristics of negative phototaxis ofChroomonas coerulea can possibly be ascribed to the presence of an eyespot.  相似文献   

12.
Summary The 7y photoreceptor in the fly (Musca, Calliphora) retina harbours an unusually complex pigment system consisting of a bistable visual pigment (xanthopsin, X and metaxanthopsin, M), a blue-absorbing C40-carotenoid (zeaxanthin and/or lutein) and a uv sensitizing pigment (3-OH retinol).The difference spectrum and photoequilibrium spectrum in single 7y rhabdomeres were determined microspectrophotometrically (Fig. 2).The extinction spectrum of the C40-carotenoid has a pronounced vibrational structure, with peaks at 430, 450 and 480 nm (Fig. 3). The off-axis spectral sensitivity, determined electrophysiologically with 1 nm resolution shows no trace of this fine structure thus excluding the possibility that the C40-carotenoid is a second sensitizing pigment (Fig. 4).The absorption spectra of X and M are derived by fitting nomogram spectra (based on fly R1–6 xanthopsin) to the difference spectrum. max for X is 425 nm, and for M 510 nm (Fig. 5). It is shown that the photoequilibrium spectrum and the difference spectrum can be used to derive the relative photosensitivity spectra of X and M using the analytical method developed by Stavenga (1975). The result (Fig. 6) shows a pronounced uv sensitivity for both, X and M, indicating that the uv sensitizing pigment transfers energy to both X and M. A value of 0.7 for, the relative efficiency of photoconversion for X and M, is obtained by fitting the analytically derived relative photosensitivity spectra to the absorption spectra at wavelengths beyond 420 nm.  相似文献   

13.
The bacteria Bacillus thuringiensis mutant is highly producing melanin pigment with increased ultra violet resistance and insecticidal activity against the potato tuber moth Phthorimaea operculella (Zeller). The results showed that the high decrease of crystal protein formation rate ranged from 100% (B.t.EMS-M2 and B.t.EMS-M6) to 91.82% (B.t.EMS-M9). The EMS–UV-induced mutants (B.t.EMS–UV-2h-1, B.t. EMS–UV-2h-2, B.t.EMS–UV-2h-3, B.t.EMS–UV-2h-5, B.t.EMS–UV-4h-1, B.t.EMS–UV-4h-3 and B.t.EMS–UV-6h-2) showed 100% decrease in the crystal protein formation. Results also showed that the growth rate of B. thuringiensis isolates was detected by measuring the light absorption of culture broth (BP media at pH 8) at the wavelength of 600 nm. The absorbance values of the standard melanin were 2.055 and 0.134 at wavelengths of 226.5 and 602 nm, respectively. This means that the maximum absorbance at wavelength was 226.5 nm, this result is similar to that of the synthetic melanin which has the absorbance of 226 nm. Our experiments detected that the pigment extracted from the mutant isolate B.t.EMS-M3 (EMS-induced mutant) gave the maximum value of absorbance (2.615) at wavelength of 227.5 nm that was similar to standard melanin which gave absorbance value about 2.055 at a wavelength of 226.5 nm. This may be due to the genetic alterations that happened to the mutant isolates due to the mutation by EMS or/and UV irradiation.  相似文献   

14.
Absorption and fluorescence excitation spectra were measuredfor batch cultures of five species of marine phytoplankton grownunder high and low light. These spectra were examined for propertiescharacteristic of taxonomic position and of photoadaptive response.While regions of absorption and excitation of chlorophyll afluorescence diagnostic of pigment composition were identifiable,photoadaptive response had greater influence on spectral variability.Although reduced growth irradiance caused changes in both theabsorption and fluorescence excitation spectra, the fluorescenceexcitation spectrum appears to be more sensitive to alterationsin the ambient light field for growth than does the absorptionspectrum. For a single species. the fluorescence excitationspectrum for a sample grown at low irradiance showed greaterstructure than that for the sample grown at a high irradiance.Under low light conditions, the excitation of chlorophyll afluorescence by accessory pigments increased relative to theexcitation by chlorophyll a itself The highest fluorescenceyields occur in the blue-green region of the spectrum, correspondingto bands of peak absorption by the accessory pigments. Changesin absorption spectra are less marked, but two features recur.First. in the blue-green region of the spectrum from -500–560nm. absorption is enhanced in the low-light cells relative tothat of the high-light cells. Second, the ratio of absorptionat 435 nm to that at 676 nm was greater for the high-light cells.Correlating changes in pigment concentrations were observed.The influence of photoadaptation on the properties of fluorescenceexcitation spectra is as great or greater than the influenceof pigment complements characteristic of specific algal taxa.  相似文献   

15.
Summary The spectral sensitivity of the visual cells in the compound eye of the mothDeilephila elpenor was determined by electrophysiological mass recordings during exposure to monochromatic adapting light. Three types of receptors were identified. The receptors are maximally sensitive at about 350 nm (ultraviolet), 450 nm (violet), and 525 nm (green). The spectral sensitivity of the green receptors is identical to a nomogram for a rhodopsin with max at 525 nm. The spectral sensitivity of the other two receptors rather well agrees with nomograms for corresponding rhodopsins. The recordings indicate that the green receptors occur in larger number than the other receptors. The ultra-violet and violet receptors probably occur in about equal number.The sensitivity after monochromatic adapting illumination varies with the wavelength of the adapting light, but is not proportional to the spectral sensitivity of the receptors. The sensitivity is proportional to the concentration of visual pigment at photoequilibrium. The equilibrium is determined by the absorbance coefficients of the visual pigment and its photoproduct at each wavelength. The concentration of the visual pigment, and thereby the sensitivity, is maximal at about 450 nm, and minimal at wavelengths exceeding about 570 nm.The light from a clear sky keeps the relative concentration of visual pigment in the green receptors, and the relative sensitivity, at about 0.62. The pigment concentration in the ultra-violet receptors is about 0.8 to 0.9, and that in the violet receptors probably about 0.6. At low ambient light intensities a chemical regeneration of the visual pigments may cause an increase in sensitivity. At higher intensities the concentrations of the visual pigments remain constant. Due to the constant pigment concentrations the input signals from the receptors to the central nervous system contain unequivocal information about variations in intensity and spectral distribution of the stimulating light.The work reported in this article was supported by the Swedish Medical Research Council (grant no B 73-04X-104-02B), by Karolinska Institutet, and by a grant (to G. Höglund) from Deutscher Akademischer Austauschdienst, and by the Deutsche Forschungsgemeinschaft, Schwerpunktsprogramm Rezeptorphysiologie HA 258-10, and SFB 114.  相似文献   

16.
Iodophenyl and anthryl retinal analogues have been synthesized. Thetrans-isomers have been isolated and purified by high pressure liquid chromatography. The purified isomers have been further characterized by nuclear magnetic resonance and ultraviolet-visible spectroscopy. Incubation of these retinal analogues with apoprotein (bacterioopsin), isolated from the purple membrane ofHalobacterium halobium gave new bacteriorhodopsin analogues. These analogues have been investigated for their absorption properties and stability. The iodophenyl analogue has been found to bind to bacterioopsin rapidly. The pigment obtained from this analogue showed a dramatically altered opsin shift of 1343 cm-1. The anthryl analogue based bacteriorhodopsin, however, showed an opsin shift of 3849 cm-1. It has been found that bacteriorhodopsin is quite unrestrictive in the ionone ring site. The apoprotein seems to prefer chromophores that have the ring portion co-planar with the polyene side chain. The purple membrane has also been modified by treatment with fluorescamine, a surface active reagent specific for amino groups. Reaction under controlled stoichiometric conditions resulted in the formation of a modified pigment. The new pigment showed a band at 390 nm—indicative of fluorescamine reaction with amino group (s) of apoprotein-besides retaining its original absorption band at 560 nm. Analysis of the fluorescamine modified bacteriorhodopsin resulted in the identification of lysine 129 as the modified amino acid residue. Fluorescamine-modified-bacteriorhodopsin suspension did not release protons under photolytic conditions. However, proteoliposomes of fluorescamine-modified-bacteriorhodopsin were found to show proton uptake, though at a reduced rate. Presented at the 3rd National Symposium on Bioorganic Chemistry, 1987, Hyderabad.  相似文献   

17.
During growth of the freshwater cyanobacteria, Oscillatoria sp. BTCC/A0004, and Scytonema sp. TISTR 8208, a pink pigment is released into the growth medium. The pigment from each source had a molecular weight of approximately 250 kDa and had adsorption maxima at 560 and 620 nm. These results suggest that pink pigment is a phycoerythrin-like protein. It inhibited the growth of green algae, Chlorella fusca and Chlamydomonas reinhardtii, but not other cyanobacteria or true bacteria. The concentration at which growth inhibition 50% occurred was 0.5, 6 and more than 10 mg ml−1, respectively.  相似文献   

18.
Summary Bacillus halodenitrificans produced a dimeric, manganese-containing superoxide dismutase constitutively when grown either aerobically or as a denitrifier. The molecular mass of the enzyme was determined by sedimentation equilibrium to be 41.4±3 kDa with each subunit estimated at 26 kDa. Plasma emission spectroscopy indicated the presence of 1.22 mol manganese atoms/mol holoenzyme. The electronic absorption spectrum displayed a broad band centered at approximately 474 nm (=560 mM–1 · cm–1) and a shoulder at 595 nm. In the ultraviolet range, the spectrum exhibited split maxima at 278 nm and 283 nm and a shoulder at 291 nm, thus resembling the spectra of superoxide dismutase fromBacillus subtilis andEscherichia coli. The amino acid composition of theB. halodenitrificans enzyme differed slightly quantitatively but little qualitatively from counterpart enzymes from other sources. Like the superoxide dismutases ofMycobacterium lepraemurium and human mitochondria, theB. halodenitrificans enzyme exhibited several cysteine residues. As expected from the capacity superoxide dismutase exhibits for protecting NO as neutrophil cytotoxicity factor, theB. halodenitrificans superoxide dismutase did not interfere with accumulation of NO produced by the organism's nitrite reductase.  相似文献   

19.
Summary The possible biogenesis of two pigment granule types present in the monochromatic, brown chromatosomes enveloping the ventral nerve chord of the freshwater palaemonid shrimps Macrobrachium acanthurus, M. heterochirus and M. olfersii is examined by transmission electron microscopy in thin section and freeze fracture replicas. Prominent, membrane limited granules are suggested to have their origin in a complex, juxtanuclear, smooth endoplasmic reticulum labyrinth, continuous with the nuclear envelope. Amembranous, lipocarotenoid granules possibly derive from the external surface of the smooth endoplasmic reticulum. Nuclear envelope and SER membranes contain numerous 11 nm diameter intramembranous particles while pigment granule membranes exhibit fewer particles. A dictyosomal origin for the lipocarotenoid granules is discounted. Granulogenesis is suggested to be a continuous process in crustacean chromatophores.  相似文献   

20.
Colonies of Botryllus schlosseri L., bred in the laboratory and genetically selected as regards the blue and/or reddish pigments, were used. The following phenotypes were investigated under the electron microscope: (a) blue colonies without reddish pigment; (b) reddish colonies without blue pigment; (c) colonies with both blue and reddish pigments; (d) colonies with neither blue nor reddish pigments. In the pigmented colonies, a specialized blood pigment cell type was recognized that, in giant membrane-limited vacuoles, contained a great number of granules. In general, the granules were similar in size, not individually limited by a membrane and were made up with electrondense material often arranged in concentric rings. Although there could be some variability within the same cell, in each phenotype the granules displayed a characteristic pattern so that the differences in colour of the granules, as seen in vivo, were paralleled by differences in the ultrastructural architecture. In the unpigmented colonies also, granulated vacuolar cells, rare in number but morphologically comparable to the pigment cells, were seen. On the basis of these results, the hypothesis of the existence of a prospective pigment cell and of a common origin for all the pigment cells of B. schlosseri is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号