首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase.  相似文献   

2.
Initial velocities of energy-dependent Ca++ uptake were measured by stopped-flow and dual-wavelength techniques in mitochondria isolated from hearts of rats, guinea pigs, squirrels, pigeons, and frogs. The rate of Ca++ uptake by rat heart mitochondria was 0.05 nmol/mg/s at 5 µM Ca++ and increased sigmoidally to 8 nmol/mg/s at 200 µM Ca++. A Hill plot of the data yields a straight line with slope n of 2, indicating a cooperativity for Ca++ transport in cardiac mitochondria. Comparable rates of Ca++ uptake and sigmoidal plots were obtained with mitochondria from other mammalian hearts. On the other hand, the rates of Ca++ uptake by frog heart mitochondria were higher at any Ca++ concentrations. The half-maximal rate of Ca++ transport was observed at 30, 60, 72, 87, 92 µM Ca++ for cardiac mitochondria from frog, squirrel, pigeon, guinea pig, and rat, respectively. The sigmoidicity and the high apparent Km render mitochondrial Ca++ uptake slow below 10 µM. At these concentrations the rate of Ca++ uptake by cardiac mitochondria in vitro and the amount of mitochondria present in the heart are not consistent with the amount of Ca++ to be sequestered in vivo during heart relaxation. Therefore, it appears that, at least in mammalian hearts, the energy-linked transport of Ca++ by mitochondria is inadequate for regulating the beat-to-beat Ca++ cycle. The results obtained and the proposed cooperativity for mitochondrial Ca++ uptake are discussed in terms of physiological regulation of intracellular Ca++ homeostasis in cardiac cells.  相似文献   

3.
The respective importance of mitochondria and of sarcoplasmic reticulum in the uptake and maintenance of Ca++ by the isolated rat diaphragm has been compared. Diaphragms were incubated at 30° in conditions optimal for Ca++ uptake either by isolated mitochondria or by sarcoplasmic reticulum: more Ca++ was taken up from the “mitochondrial” medium. For maximal uptake, Pi and Mg++ were necessary; substitution of NaCl and KC1 with sucrose had no effect on the uptake. The uptake was markedly inhibited by uncouplers of oxidative phosphorylation, by respiratory inhibitors, and by lowering the temperature of the incubation medium to 0°; it was not affected by oligomycin, aurovertin, DCCD, nor by inhibitors of Ca++ transport in the isolated sarcoplasmic reticulum (ergotamine, ergobasinine, caffeine). The lack of effect of caffeine was not due to lack of penetration into the muscle. Permeability barriers for ergotamine and ergobasinine could not be excluded. The maintenance of Ca++ by the diaphragm was optimal in a medium contaming Pi and Mg++. Uncoupling agents and respiratory inhibitors accelerated the rate and extent of release of Ca++ by the diaphragm. Lowering the temperature of the incubation medium to 0°, or addition of oligomycin, aurovertin, DCCD, had no effect on the release. The release of Ca++ was also unaffected by ergotamine, ergobasinine, caffeine. The results suggest a role for mitochondria in the uptake and maintenance of Ca++ by the isolated diaphragm.  相似文献   

4.
Our laboratory has recently reported that intestinal bile acid malabsorption in cystic fibrosis (CF) is a primary mucosal cell defect. Others have suggested that elevated intracellular Ca++ levels in other cell types in CF may represent a common primary dysfunction in Ca++ efflux in these cells. We examined the possibility that intestinal bile acid absorption and Ca++ efflux in mucosal cells may be linked physiologically. Brush border membrane vesicles (BBMV) prepared from guinea pig ileum served as the experimental model to test this hypothesis. Ca++ (2.5×10?3M) present in the incubation medium did not alter the uptake of taurocholic acid (TCA) by BBMV. Also, TCA uptake into BBMV preloaded with Ca++ was not significantly different from that in BBMV not previously loaded with Ca++. Furthermore, with TCA present in the incubation medium, Ca++ efflux from preloaded BBMV was not altered. These data suggest that ileal TCA uptake, as measured by BBMV, is not dependent upon either intra- or extravesicular Ca++. Also, Ca++ efflux from BBMV is unaffected by TCA uptake. Although separate lines of evidence suggest that intestinal bile acid malabsorption and reduced plasma membrane Ca++ flux are primary defects in CF, we conclude that in the normal intestine these functions are independent physiological processes.  相似文献   

5.
The relationship between uptake of Ca++ and incorporation of sn-[14C]-glycerol-3-phosphate into phosphatidate, diglyceride, and triglyceride was evaluated in microsomes isolated from livers of normal fed male rats. Uptake of Ca++ was dependent on concentration of Ca++ (0.1 – 2.5 mM), and accompanied by a decrease in the rate of glycerolipid synthesis. The quantity of Ca++ ion taken up at 20 μM CaCl2 in the presence of ATP was equivalent to that observed with 2.5 mM CaCl2 in the absence of ATP. The ATP dependent uptake of Ca++, like the passive uptake at higher concentrations of Ca++, was correlated with inhibition of incorporation of sn-glycerol-3-phosphate into phosphatidate. Accumulation of Ca++ in hepatic microsomes, therefore, appears to result in a calcium-dependent decrease in biosynthesis of phosphatidate and other glycerolipids.  相似文献   

6.
Summary Primary cultures of embryonic chick pectoral skeletal muscle were used to study calcium regulation of myoblast fusion to form multinucleated myotubes. Using atomic absorption spectrometry to measure total cellular calcium and the45Ca-exchange method to determine free cellular Ca++, our data suggest that only the free cellular calcium changes significantly during development under conditions permissive for myotube formation (0.9 mM external Ca++). Increases in calcium uptake occurred before and toward the end of the period of fusion with the amount approximating 2 to 4 pmol per cell in mass cultures. If the medium [Ca++] is decreased to 0.04 mM, as determined with a calcium electrode, a fusion-block is produced and free cell Ca++ decreased 5- to 10-fold. Removal of the fusion-block by increasing medium [Ca++] results in a release of the fusion-block and an increase in cellular Ca++ to approximately 1 pmol per cell during fusion, and higher thereafter. Cation ionophore A23187 produced transient increases in cellular calcium and stimulated myoblast fusion and the final extent of myotube formation only when added at the onset of culture. Results suggest that transient increased calcium uptake alone is insufficient for fusion because critical cellular content in conjunction with permissive amounts of medium [Ca++] must exist. The latter suggests further that cell surface Ca++ was also critical.  相似文献   

7.
Summary The uptake of Ca and Sr by three-week old tomato (Lycopersicon esculentum) plants from solutions containing Ca++ and Sr++, and chelated Ca and Sr (CaL and SrL) was measured over a two-day period. The solution was double-labelled with Ca45 and Sr85. Two chelates, EDTA (ethylenediaminetetraacetic acid) and DTPA (diethylenetriaminepentaacetic acid) were used at five chelate-cation ratios. When the Ca and Sr content of the solution was held constant, addition of chelate reduced uptake. The reduction was greater with EDTA than with DTPA.The Ca/Sr ratio of uptake was used to measure the proportion of uptake as the chelated and unchelated species. The Ca++/Sr++ ratio was different from the CaL/SrL ratio in solution because of the different equilibrium reactions of Ca and Sr with L. Direct uptake of the CaL and SrL was indicated. In solutions where Ca++ = CaL, uptake of CaEDTA was 0.47 of uptake of Ca++ and uptake of CaDTPA was 0.95 of uptake of Ca++.Journal Paper No. 4969. Purdue University Agricultural Experiment Station, Lafayette, Indiana 47907. Contribution from the Department of Agronomy. This research was supported in part by the U.S. Atomic Energy Commission under Contract AT(11-1)-1495.  相似文献   

8.
Sarcoplasmic reticulum fragments (S.R.F.) were isolated from skeletal and heart muscles. These fragments were found to take up Ca++ very actively from media. When monophasic square waves were passed through the S.R.F. suspension, the Ca++ uptake by S.R.F. was decreased. When the suspension was stimulated electrically after the Ca++ was taken up by S.R.F., the initiation and the cessation of the stimulation were followed by the release and re-uptake of Ca++ by S.R.F., respectively. The degree of inhibition of the Ca++ uptake as well as of the Ca++ release by electrical stimulation was dependent on the voltage and the frequency of stimulation. The presence of inorganic phosphate or oxalate modified the influence of electrical stimulation on the release and the uptake of Ca++ by S.R.F. Attempts were made to observe the release of Ca++ by electrical stimulation from unfractionated sarcoplasmic reticulum remaining in myofibers, and the interaction of the released Ca++ with myofibrils in vitro. For this purpose, the glycerol-extracted fiber was selected as a muscle model, since it contains both sarcoplasmic reticulum and myofibrils. It was found that electrical stimulation of skeletal and heart glycerol-extracted fibers resulted in the contraction of fibers. It appeared that the contraction of glycerol fibers by electrical stimulation was caused by the Ca++ release from sarcoplasmic reticulum by stimulation.  相似文献   

9.
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad‐selectivity channel known as the plasmodial surface anion channel, increased Ca++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N‐hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca++ permeability, suggesting involvement of parasite‐encoded proteins trafficked to the host membrane. A high‐throughput chemical screen identified the first Ca++ transport inhibitors active against Plasmodium‐infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca++] is consistent with parasite killing specifically via action on one or more Ca++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca++ transport and may be starting points for new antimalarial drugs.  相似文献   

10.
Summary Rabbit aortic smooth muscle cells were prepared by enzymatic digestion of the aortic smooth muscle layer. The cells were subcultured up to Passage 22 starting from a cryogenically preserved stock (approximately 1010cells, Passage 8) and characterized morphologically and for45Ca++ uptake. Microscopically the cells demonstrated the characteristics of vascular smooth muscle cells.45Ca++ uptake by the cells plated on tissue culture flasks (25 cm2) was determined at 25°C in physiological salt solution (PSS) containing45Ca++ in low (5 mM) or high (50mM) KCl concentrations. At the end of the incubation period (0 to 30 min), PSS was aspirated and the cells quickly washed, digested with 0.5N NaOH, and counted for45Ca++. High K+ increased the45Ca++ uptake by 100% or more compared to the low K+ uptake of45Ca++. This K+-induced45Ca++ uptake was eliminated in osmotically shocked cells, and inhibited by nifedipine, verapamil, and diltiazem, in a dose-dependent manner. The extent of45Ca++ uptake and the inhibitory activity of nifedipine were retained up to Passage 22. It is concluded that the developed methodology for scaled-up cultures of rabbit aortic smooth muscle cells provides morphologically intact and biochemically functioning cells suitable for calcium channel studies.  相似文献   

11.
A fluorescent chelate probe and a Millipore filtration technique have been used to study the effects of β-bungarotoxin (β-toxin) on passive and active Ca++ uptake and ATPase in fragmented sarcoplasmic reticulum (SR) of rabbit skeletal muscle. β-Toxin at 3 × 10?6 M did not affect ATPase activity. In the absence of ATP, β-Toxin increased the passive uptake of Ca++; in the presence of ATP, active Ca++ uptake was inhibited. The effect of β-toxin in SR can be detected at concentrations as low as 10?9 M. The results suggest that β-toxin induces Ca++ leakage in SR membranes.  相似文献   

12.
The relationship between active extrusion of Ca++ from red cell ghosts and active uptake of Ca++ by isolated red cell membrane fragments was investigated by studying the Ca++ uptake activities of inside-out and right side-out vesicles. Preparations A and B which had mainly inside-out and right side-out vesicles, respectively, were isolated from red cell membranes and were compared with respect to Ca++ adenosine triphosphatase (ATPase) and ATP-dependent Ca++ uptake activities. Preparation A had nearly eight times more inside-out vesicles and took up eight times more 45Ca in the presence of ATP compared to preparation B. Separation of the 45Ca-labeled membrane vesicles by density gradient centrifugation showed that the 45Ca label was localized to the inside-out vesicle fraction. In addition, the 45Ca taken up in the presence of ATP was lost during a subsequent incubation in the absence of ATP. The rate of 45Ca loss was not influenced by the presence of EGTA, but was slowed in the presence of La+8 (0.1 mM) in the efflux medium. The results presented here support the thesis that the active uptake of Ca++ by red cell membrane fragments is due to the active transport of Ca++ into inside-out vesicles.  相似文献   

13.
The Ca++ ionophore A23187 had no effect on the release of amylase by mouse pancreas fragments in the absence of Ca++ but when Ca++ was re-added to the medium amylase release was observed in a pattern which mimicked that produced by normal stimulants. Uptake of 45Ca++ by pancreatic fragments was increased by A23187. Tetracaine and dinitrophenol at concentrations which block cholinergic stimulated enzyme release blocked ionophore induced release whereas atropine did not. None of the inhibitors studied affected the ionophore induced Ca++ uptake.  相似文献   

14.
Insulin in low concentrations inhibits the uptake of Ca++ by the monooctadecyl (stearyl) phosphate monolayer (at air-water interface) and facilitates the release of Ca++ adsorbed to the monolayer. These effects of insulin are more pronounced at higher insulin concentrations. Evidence is presented that a relatively intact insulin molecule competes with Ca++ for the free phosphate group of the monolayer. Albumin has a slight inhibitory action on calcium uptake and parathyroid hormone has no observable action on calcium uptake or release.  相似文献   

15.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

16.
Cystic Fibrosis (CF) serum and its isolated component IgG fraction produce an increased uptake of 45Ca++ in rabbit tracheal explants when compared to control serum and its isolated IgG fraction. Heterozygote serum also produced an increased uptake of 45Ca++ but not to the same extent as CF serum. The calcium channel blocker D600 inhibited the CF serum induced uptake of 45Ca++ indicating that CF serum may be acting on the plasma membrane to produce changes in calcium permeability in rabbit tracheal explants.  相似文献   

17.
The 5,6- 8,9-; 11,12- and 14,15-epoxyeicosatrienoic acids and their respective hydration products, the vic-doisl, recently reported as metabolites of arachidonic acid in rat liver microsomes, were examined for effect on release of 45Ca from canine aortic smooth muscle miscrosomes. At 10−6 M, the diols had no effect, but the 5,6-; 11,12- and 14,15-epoxyacids increased the loss of 45Ca. Further studies with the 14,15-epoxyacid demonstrated a dose-dependent decrease of Ca++ uptake (ATP present) in canine aortic microsomes in 0.03 mM Ca++, whereass Ca++ binding (ATP absent) was not affected. Ca++ uptake, binding and release in rat liver microsomes was similarly affected by the 14,15-epoxyacid, the major epoxyeicosatrienoic acid derivative produced by rat liver miscrosomal incubations. It is suggested that a alterations in Ca++ metabolism might be a possible mechanism of actions for these derivatives of arachidonic acid.  相似文献   

18.
Intracellular Ca++ is known to influence Na+ flux in luminal membranes. Abnormally elevated Ca++ levels in some cells is believed to be the primary pathophysiologic defect in cystic fibrosis (CF). This in turn is thought to alter Na+ transport which accounts for certain clinical manifestations of this disease. Two Na+-dependent intestinal transport mechanisms have been reported to be suppressed or missing in CF. To examine whether alterations in cell Ca++ may account for these findings, studies were performed to examine the influence of Ca++ on Na+-solute co-transport across intestinal luminal membranes. Purified brush border membrane vesicles prepared from rat small bowel were preincubated in either Ca++-free buffer or buffer containing 2.5 mM CaCl2. Ca++ loaded vesicles showed marked inhibition of Na+ co-transport of taurocholic acid, taurochenodeoxycholic acid, glucose and valine when compared to controls. The uptake of Na+ was also significantly reduced by intravesicular Ca++. These data demonstrate that intravesicular Ca++ inhibits Na+-coupled solute transport as well as Na+ influx across intestinal brush border membranes. These data suggest that intracellular Ca++ may suppress Na+-dependent solute absorption in the intestine. Results presented here further support the theory that elevated intracellular Ca++ may account for intestinal malabsorption and other altered transport phenomena reported in CF.  相似文献   

19.
Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca++ signaling, that could not be reconciled with the basic principles of the current hypothesis, are intrinsic properties of the new concept. Quantal Ca++ release, Ca++-induced Ca++ release (CICR), the coupling phenomen between the filling state of the Ca++ store and the activity of the Ca++ influx pathway, as well as the various yet unexplained complex kinetics of Ca++ uptake and release can be explained on a common mechanistic basis. J. Cell. Physiol. 180:19–34, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
Summary Secretagogues of pancreatic enzyme secretion, the hormones pancreozymin, carbamylcholine, gastrin I, the octapeptide of pancreozymin, and caerulein as well as the Ca++-ionophore A 23187 stimulate45Ca efflux from isolated pancreatic cells. The nonsecretagogic hormones adrenaline, isoproterenol, secretin, as well as dibutyryl cyclic adenosine 3,5-monophosphate and dibutyryl cyclic guanosine 3,5-monophosphate have no effect on45Ca efflux. Atropine blocks the stimulatory effect of carbamylcholine on45Ca efflux completely, but not that of pancreozymin. A graphical analysis of the Ca++ efflux curves reveals at least three phases: a first phase, probably derived from Ca++ bound to the plasma membrane; a second phase, possibly representing Ca++ efflux from cytosol of the cells; and a third phase, probably from mitochondria or other cellular particles. The Ca++ efflux of all phases is stimulated by pancreozymin and carbamylcholine. Ca++ efflux is not significantly effected by the presence or absence of Ca++ in the incubation medium. Metabolic inhibitors of ATP production, Antimycin A and dinitrophenol, which inhibit Ca++ uptake into mitochondria, stimulate Ca++ efflux from the isolated cells remarkably, but inhibit the slow phase of Ca++ influx, indicating the role of mitochondria as an intracellular Ca++ compartment. Measurements of the45Ca++ influx at different Ca++ concentrations in the medium reveal saturation type kinetics, which are compatible with a carrier or channel model. The hormones mentioned above stimulate the rate of Ca++ translocation.The data suggest that secretagogues of pancreatic enzyme secretion act by increasing the rate of Ca++ transport most likely at the level of the cell membrane and that Ca++ exchange diffusion does not contribute to the45Ca++ fluxes.With the technical assistance of C. Hornung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号