共查询到20条相似文献,搜索用时 0 毫秒
2.
DNA sequences of the mitochondrial nd6 gene and the non-repetitive part of the pseudo-control region (PsiCR) were isolated from 101 individuals to analyze the phylogenetic relationships among all buzzards of the genus Buteo and other buteonine genera. Comparisons of the two marker sequences indicate that the PsiCR evolved two times faster than the nd6 gene. The PsiCR proved to be an efficient, neutral genetic marker sequence for phylogenetic analyses at the intrageneric level, especially suitable for analyses based on old tissues, where only short fragments can be obtained. The molecular data set implies a neotropical origin of the genus Buteo. Monophyly of the genus Buteo as currently defined is contradicted due to the positions of Asturina nitida, Geranoaetus melanoleucus, Buteo magnirostris, and Buteo leucorrhous. These findings suggest several taxonomic consequences. A. nitida and G. melanoleucus should be included into the genus Buteo. Moreover, B. leucorrhous should be transferred into the genus Percnohierax (which clusters with Parabuteo), and B. magnirostris into the genus Rupornis. According to this classification of the genus Buteo, the basal lineage of the genus is formed by a clade containing Buteo polyosoma, Buteo poecilochrous, and Buteo melanoleucus. The "woodland buteos" form a paraphyletic assemblage with B. magnirostris as a clearly separated lineage basal to the genus Buteo. 相似文献
3.
The phylogenetic relationships of members of Cotingidae were investigated using >2100 bp of sequence data from two nuclear introns (myoglobin intron 2 and G3PDH intron 11) and one protein-coding mitochondrial gene (cytochrome b). Strong support was found for a monophyletic clade including 23 traditional cotingid genera, corresponding to the Cotingidae sensu [Remsen, J.V. Jr., Jaramillo, A., Nores, M., Pacheco, J.F., Robbins, M.B., Schulenberg, T.S., Stiles, F.G., da Silva, J.M.C., Stotz, D.F., Zimmer, K.J., 2005. Version 2005-11-15. A classification of the bird species of South America. American Ornithologists' Union. ]. Neither Oxyruncus nor any of the genera in Tityrinae sensu [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] are members of Cotingidae. Within Cotingidae a polytomy of four well-supported clades was recovered: (1) the fruiteaters Pipreola and Ampelioides; (2) the Ampelion group, including Phytotoma; (3) Rupicola and Phoenicircus; and (4) the 'core cotingas' consisting of the remainder of the Cotingas (e.g. fruitcrows, Cotinga, Procnias, Lipaugus, and Carpodectes), with Snowornis in a basal position. The separation of Snowornis from Lipaugus [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] was strongly supported, as were the close relationships between Gymnoderus and Conioptilon, and between Tijuca and Lipaugus. However, basal relationships among 'core cotinga' clades were not resolved. 相似文献
4.
While the monophyly of the largest avian order Passeriformes as well as its suborders suboscines (Tyranni) and oscines (Passeri) is well established, lower phylogenetic relationships of this fast radiated taxon have been a continuous matter of debate, especially within the suborder oscines. Many studies analyzing phylogenetic relationships of the Passeriformes using molecular markers have been published, which led to a better resolved phylogeny. Conflicting hypotheses and still remaining uncertainties, especially within the Passerida, have repeatedly stimulated further research with additional new markers. In the present study we used a combination of established molecular markers (RAG‐1, RAG‐2, c‐ myc) and the recently introduced ZENK. We accomplished phylogenetic analyses using maximum parsimony, maximum likelihood and Bayesian inference, both separately for all genes and simultaneously. To assess the phylogenetic utility of the different genes in avian systematics we analyzed the influence of each data partition on the phylogenetic tree yielded by the combined approach using partitioned Bremer support. Compared with the other single gene analyses, the ZENK trees exhibited by far the best resolution and showed the lowest amount of homoplasy. Our data indicate that this gene is—at least in passerines—suitable for inference of even old taxonomic splits. Our combined analysis yields well‐supported phylogenetic hypotheses for passerine phylogeny and apart from corroborating recently proposed hypotheses on phylogenetic relationships in the Passeriformes we provide evidence for some new hypotheses. The subdivision of the Passerida into three superfamilies, Sylvioidea, Passeroidea and Muscicapoidea, the first as sister to the two latter groups is strongly supported. We found evidence for a split between Paridae and the remaining Sylvioidea. © The Willi Hennig Society 2007. 相似文献
5.
Gene trees will often differ from the true species history, the species tree, as a result of processes such as incomplete lineage sorting. New methods such as Bayesian Estimation of the Species Tree (BEST) use the multispecies coalescent to model lineage sorting, and directly infer the species tree from multilocus DNA sequence data. The Sulidae (Aves: Pelecaniformes) is a family of ten booby and gannet species with a global distribution. We sequenced five nuclear intron loci and one mitochondrial locus to estimate a species tree for the Sulidae using both BEST and by concatenating nuclear loci. We also used fossil calibrated strict and relaxed molecular clocks in BEAST to estimate divergence times for major nodes in the sulid phylogeny. Individual gene trees showed little phylogenetic conflict but varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. On the other hand, both the BEST and concatenated species trees were highly resolved, strongly supported, and topologically consistent with each other. The three sulid genera (Morus, Sula, Papasula) were monophyletic and the relationships within genera were mostly consistent with both a previously estimated mtDNA gene tree and the mtDNA gene tree estimated here. However, our species trees conflicted with the mtDNA gene trees in the relationships among the three genera. Most notably, we find that the endemic and endangered Abbott's booby (Papasula abbotti) is likely basal to all other members of the Sulidae and diverged from them approximately 22 million years ago. 相似文献
6.
A molecular phylogeny based on DNA/DNA hybridization revealed that the Sylvia-Parisoma complex is monophyletic and includes three main groups of species, the “mid-European” warblers, the genus Parisoma, and the “eu-Mediterranean” Sylvia species sensu stricto. The latter can be assigned to three main clusters, a “West-Mediterranean” group, a “Central-Mediterranean group”, and an “East-Mediterranean” group. The radiation of the whole complex is much more ancient than formerly believed. It started ca 12–13 Ma ago and the ancestors of the main extant groups differentiated during the Pliocene. Only speciation events within the “eu-Mediterranean” lineages occurred during the Pleistocene. The paleoclimatical and paleoecological history of the Mediterranean region is too complicated to provide any evidence for direct relationships between past events and evolutionary steps of these taxa which did not leave any reliable fossil record. However, some major speciation events may be related to well documented climatical crises as well as paleobotanical data. The largely man-induced extension of matorrals over several millenia presumably extended the range of several species that were formerly much more restricted, which complicates reconstruction of the spatio-temporal course of speciation. 相似文献
7.
Bonaccorso, E., Guayasamin, J. M., Peterson, A. T. & Navarro‐Sigüenza, A. G. (2011). Molecular phylogeny and systematics of Neotropical toucanets in the genus Aulacorhynchus (Aves, Ramphastidae). — Zoologica Scripta, 40, 336–349. We studied the phylogenetic relationships in the genus Aulacorhynchus, an assemblage of Neotropical toucanets distributed from Mexico south to Bolivia. Based on mitochondrial and nuclear DNA characters, we obtained a robust hypothesis of relationships for all recognized species, including good representation of distinct geographic populations. Our results support the monophyly of the genus Aulacorhynchus, but contradict previous taxonomic arrangements. The genus is made up of three major clades: the Aulacorhynchus prasinus complex, Aulacorhynchus huallagae + Aulacorhynchus coeruleicinctis, and Aulacorhynchus haematopygus + Aulacorhynchus sulcatus + Aulacorhynchus derbianus. Andean populations of A. derbianus are more closely related to A. sulcatus than to Pantepuian populations of A. derbianus, rendering A. derbianus paraphyletic. Based on the molecular phylogeny, and information on geographic distributions and morphological and behavioural characters, we review the specific status of these taxa and propose a new taxonomic arrangement within Aulacorhynchus. 相似文献
8.
The phylogenetic relationships of the Timaliidae (babblers) and Sylviidae (warblers) have long challenged ornithologists. We focus here on three Malagasy genera currently assigned to the Timaliidae, Mystacornis, Oxylabes, and Neomixis, and on their relationships with other babblers and warblers using the sequences of two mitochondrial genes (cytochrome b and 16S rRNA). Maximum parsimony analyses show that the Malagasy “babblers” are not related to any of the other African and Asian babblers. The genus Mystacornis is neither a babbler nor a warbler. The other Malagasy “babblers” are members of warbler groups (the monophyly of the Sylviidae is not demonstrated). Oxylabes madagascariensis and Hartertula flavoviridis (we recognize Hartertula as a genus for the species flavoviridis, previously Neomixis flavoviridis) constitute, with two presumed sylviine taxa, Thamnornis chloropetoides and Cryptosylvicola randrianasoloi, a warbler radiation endemic to the island of Madagascar. The other Neomixis species ( tenella, striatigula, and viridis) belong to another warbler group comprising cisticoline taxa. These results show that the Timaliidae did not disperse to Madagascar. Rather, the island has been colonized, independently, by at least two clades of warblers, probably originating from Africa, where the Sylviidae radiation has been the most extensive. 相似文献
9.
Organisms should respond more aggressively towards species perceived as a danger to their offspring, but intensity of defence may be gauged by the value of current offspring weighed against the value of future reproductive opportunities. We tested whether defensive responses of nesting reed warblers ( Acrocephalus scirpaceus) are the result of an interaction effect between the type of stimulus confronted and the value of the warbler’s nesting attempt. We quantified the ability of reed warblers to discriminate among brood parasites, nestling predators and non‐threatening species at different stages of the breeding cycle. We also determined whether variables that influence the value of offspring, such as time of season, size and age of clutch or brood, and time of day and number of visits to the nest, explain variation in the intensity of defence recorded during the egg and nestling stages. Responses to the three stimuli differed significantly, as reed warblers consistently directed their mobbing calls and attacks towards parasites, whereas they were less conspicuous when confronted with models of predators. Reed warblers modulated their responses towards each stimulus in accordance with the threat each posed at a specific nesting stage, whereas they were not affected by other variables relative to their reproductive potential. The churr call, however, was uttered independently of the stimulus, as it was triggered by the mere presence of nestlings in the nest. 相似文献
11.
Ecological barriers are the riskiest phases of the annual migrations for migratory birds. Comparatively little field data exists pertaining to the ability of migratory birds to prepare for the challenges of crossing ecological barriers, or their ability to recuperate afterward. Migrating Reed Warblers ( Acrocephalus scirpaceus) were captured in Eilat, Israel, during their spring and autumn migrations. Data on spring and autumn body masses, their inter-annual variation, and the pattern of body mass increase were analysed. The birds show a significant inter-annual variation in their body mass and body condition index in both seasons, which is consistent with the data from other sites and for other passerine species. During stopovers, mass gain occurred in both seasons. Birds in poor initial condition, and those that stop over for a longer period of time, gained more body mass faster. In spring, but not in autumn, the progress of the season was also an important factor; late-arriving birds gained more fuel faster. The average rate of fuel gain was 0,157g·day ?1 ± 0.018 SE. 相似文献
12.
Mitochondrial sequences (2,379 bp) from cytochrome b, ND3, 12s and 16s rRNA were analyzed in order to reconstruct the phylogenetic relationships within the yuhinas ( Yuhina), including the chestnut-faced babbler Stachyris whiteheadi which is endemic to the Philippines, the Japanese white-eye Zosterops japonicus, the chestnut-flanked white-eye Z.
erythropleurus, and the oriental white-eye Z. palpebrosus. The results showed strong support for the idea that S.whiteheadi and three white-eye species form a clade embedded within the Yuhina clade. The robustness of the Yuhina/Philippine Stachyris/ Zosterops clade rejected the validity of the monotypic genus Staphida, which was proposed for the striated yuhina Yuhina castaniceps based on its peculiar morphological traits. Sister group relationships between the striped-throated yuhina Yuhina gularis and the rufous-vented yuhina Yuhina occipitalis and between the whiskered yuhina Yuhina flavicollis and the white-naped yuhina Yuhina bakeri were discovered. The sympatric patterns of the above two sister groups in the Himalayas is most likely due to secondary contact.
The molecular phylogeny also suggests that crestlessness was derived just once for the Zosterops/Philippine Stachyris clade. The Zosterops/Philippine Stachyris clade in our study also implies that an ancestor of Zosterops/Philippine Stachyris derived the ability to disperse over long distances, so that it could fly over the sea and arrive at the Philippines. 相似文献
13.
Cryptic species of passerine birds lack notable morphological differentiation and can best be identified by molecular and bioacoustic markers. Here we investigate seven cryptic species of the golden-spectacled warbler ( Seicercus burkii complex) with respect to territorial song and cytochrome- b (cyt- b) sequences. Their phylogenetic relations to other Seicercus species and to members of the genus Phylloscopus are inferred by the same methods. Three separate lineages of Seicercus are nested within different branches of the molecular Phylloscopus tree. The S. burkii complex is a monophyletic unit comprising seven species ( S. burkii s. str., S. whistleri, S. valentini, S. soror, S. omeiensis, S. tephrocephalus and S. affinis). S. xanthoschistos turned out to be a close relative of Phylloscopus davisoni within the P. reguloides group. Two isolated sister taxa, S. grammiceps and S. castaniceps, also branch together with the P. reguloides group. Within the S. burkii complex the overall haplotype and nucleotide diversity is highest in taxa from the Chinese middle and upper mountain belt ( S. valentini, S. omeiensis and S. soror), indicating at least partially restricted gene flow in these species. This is explained by the fragmentation of high-altitude habitats in China while in the Himalayas the vicariant species S. whistleri inhabits a more continuous mountain belt at the same altitude. For the Chinese species from medium and high altitudes, past range expansion is indicated by significantly negative Tajima Ds. According to pairwise genetic distances, most species of the S. burkii complex have diverged 5 myr ago, the most recent split between S. burkii and S. tephrocephalus is dated 2 myr ago. Coalescence times for haplotype lineages of the different species range from 9 up to 12 myr, and between 5 and 6 myr for S. burkii and S. tephrocephalus. Within Seicercus divergence of song features such as frequency parameters and syntax structures correlate with genetic distances between taxa. The three cyt-b lineages of Seicercus correspond to different clusters in a discriminant analysis by acoustic parameters. Common syntax structures of territorial song in the Phylloscopus/Seicercus assemblage are: (1) an introductory element derived from specific calls and (2) a syntax of trills and repeated element groups or a combination of both. There are clear indications that these song structures have repeatedly emerged, were lost or were altered in different branches of the phylogenetic tree at different times. Absolute differences between taxa in frequency parameters or in an acoustic divergence index increase significantly with growing genetic distances. However, due to multiple parallel evolution phylogenetic information provided by single acoustic traits decreases with increasing numbers of taxa involved in the investigation. 相似文献
14.
Due to a lack of distinctive morphological characters, swift taxonomy and phylogeny has always been an area of disagreement. To shed more light on this subject, we reconstructed swift(let) phylogeny based on 1143 bp of mitochondrial cytochrome-b DNA sequence. Although this is not the first attempt to reconstruct swift phylogeny using molecular data, our results show higher support for many of the branches due to our much longer sequences. However, placement of Hydrochous is still unexpected. Implementation of more conservative genetic regions and sampling of more taxa could solve this problem. Most importantly, the Collocaliini resolve as a monophyletic group. The internal structure of the group shows that non-echolocating Collocalia and echolocating Aerodramus form two distinct clades. This is in congruence with earlier classifications based on morphological characters, but in contrast with more recent classifications. 相似文献
15.
We present a molecular phylogeny of bullfinches (Pyrrhula Brisson, 1760) based on 2357bp DNA sequence information of mitochondrial genes (cyt-b, 16S rRNA) and nuclear introns (fib-7, GAPDH-11). The genus is clearly a monophyletic group. Within the limits of Pyrrhula, molecular methods support the subdivision of three main groups: (1) "Southeast-Asian bullfinches" (P. nipalensis and P. leucogenis), (2) "Himalayan bullfinches" (P. aurantiaca, P. erythaca, P. erythrocephala), and (3) "Eurasian bullfinches" (P. pyrrhula s.l.). Within the last group there are four different subgroups: (3a) P. (p.) murina, (3b) P. (p.) cineracea, (3c) P. (p.) griseiventris, and (3d) P. pyrrhula s.str. The centre of origin of the genus Pyrrhula was most probably Southeast Asia. Incomplete lineage sorting of both mitochondrial and nuclear genes is observed among two apparently good species (P. erythaca and P. erythrocephala) indicating a very recent speciation event within the Himalayan Mountain chain. According to our estimates, the Pyrrhula ancestors split from the Pinicola ancestors before the Pleistocene. Apart from the subsequent Pre-Pleistocene splits of the three ancestral main groups, most of the diversification of today's representatives probably took place during the past 600,000 years, possibly in interaction with Pleistocene refugia and successive colonization movements after the last glaciation. Thus our work confirms the traditional delimitation of the bullfinches towards the other members of the finch family Fringillidae and corroborates most of the classic intra-generic subdivisions. 相似文献
17.
A new phylogenetic hypothesis for Euthyneura is proposed based on the analysis of primary sequence data (mitochondrial cox1, trnV, rrnL, trnL(cun), trnA, trnP, nad6, and nad5 genes) and the phylogenetic utility of two rare genomic changes (the relative position of the mitochondrial trnP gene, and an insertion/deletion event in a conserved region of the mitochondrial Cox1 protein) is addressed. Both sources of phylogenetic information clearly rejected the monophyly of pulmonates, a group of gastropods well supported so far by morphological evidence. The marine basommatophoran pulmonate Siphonaria was placed within opisthobranchs and shared with them the insertion of a Glycine in the Cox 1 protein. The marine systellommatophoran pulmonate Onchidella was recovered at the base of the opisthobranch + Siphonaria clade. Opisthobranchs, Siphonaria, and Onchidella shared the relative position of the mitochondrial trnP gene between the mitochondrial trnA and nad6 genes. The land snails and slugs (stylommatophoran pulmonates) were recovered as an early split in the phylogeny of advanced gastropods. The monophyly of the Euthyneura (Opisthobranchia + Pulmonata) was rejected by the inclusion of the heterostrophan Pyramidella. 相似文献
18.
Sequences of mitochondrial genes 12S and 16S rRNA (2 445 bp) and the region of the nuclear beta-spectrin gene (828 bp) were analyzed in members of the family Cervidae and in other artiodactyls. Several molecular synapomorphies characteristic both of Cervidae and musk deer have been found. According to our data, Cervidae is a sister clade to Bovidae, which are very close to Moschidae. The family Giraffidae is exterior to this common clade, while Antilocapridae occupies a more basal position. The family Cervidae proper splits into three clades including the genera Cervus and Muntiacus (1), Capreolus, Hydropotes, Alces (2), and Rangifer, Odocoileus, and the remaining genera (3). In general, our phylogenetic reconstructions conform to the results of earlier molecular genetic studies, but substantially differ from the traditional taxonomy of Ruminantia. 相似文献
19.
We provide a molecular phylogeny for Old World swifts of genera Apus and Tachymarptis (tribe Apodini) based on a taxon-complete sampling at the species level. Phylogenetic reconstructions were based on two mitochondrial (cytochrome b, 12S rRNA) and three nuclear markers (introns of fibrinogen and glyceraldehyde 3-phosphate dehydrogenase plus anonymous marker 12884) while the myoglobin intron 2 did not show any intergeneric variation or phylogenetic signal among the target taxa at all. In contrast to previous hypotheses, the two genera Apus and Tachymarptis were shown as reciprocally monophyletic in all reconstructions. Apus was consistently divided into three major clades: (1) East Asian clade of A. pacificus and A. acuticauda, (2) African-Asian clade of A. caffer, A. batesi, A. horus, A. affinis and A. nipalensis, (3) African-Palearctic clade of eight currently accepted species among which sequences of A. apus and A. pallidus clustered in a terminal crown clade. Phylogenetic signal of all four nuclear markers was extremely shallow within and among species of tribe Apodini and even among genera, such that intra- and intergeneric relationships of Apus, Tachymarptis and Cypsiurus were poorly resolved by nuclear data alone. Four species, A. pacificus, A. barbatus, A. affinis and A. caffer were consistently found to be paraphyletic with respect to their closest relatives and possible taxonomic consequences are discussed without giving particular recommendations due to limitations of sampling. Incomplete mitochondrial lineage sorting with cytochrome-b haplotypes shared among species and across large geographic distances was observed in two species pairs: A. affinis/A. nipalensis and A. apus/A. pallidus. Mitochondrial introgression caused by extant or past gene flow was ruled out as an explanation for the low interspecific differentiation in these two cases because all nuclear markers appeared to be highly unsorted among Apus species, too. Apparently, the two extant species pairs originated from very recent dispersal and/or speciation events. The currently accepted superspecies classification within Apus was not supported by our results. 相似文献
20.
We analyzed the levels of genetic variability in a long-distance migratory reed warbler, the Marsh Warbler Acrocephalus palustris, by using nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene (COI; 611 nucleotides [nt]). We obtained sequences from 229 individuals from ten sampling sites that include breeding, wintering, and migrating birds. Overall, 44 haplotypes were detected, which reflect high levels of genetic variation in this species, but most of this variation corresponds to individual differences within collecting sites. We also analyzed 829 nt of cytochrome b (cyt b) from 49 selected individuals of different sampling sites to evaluate the reliability of the COI results. Our analyses based on both mtDNA loci could not detect any population subdivision or phylogeographic structure, indicating high levels of gene flow between breeding sites ( Nm?=?13.69). The split between the Marsh Warbler and its sister species, the Eurasian Reed Warbler Acrocephalus scirpaceus, could be dated for the Lower Pliocene (about 3.8 million years ago). The time to the most recent common ancestor (TMRCA) among Marsh Warbler haplotypes was estimated as 0.45 million years, indicating their bottleneck during the last glacial periods. Low nucleotide diversity, a shallow phylogenetic tree, a star-like haplotype network, and a unimodal mismatch distribution point to a sudden increase of the effective population size (probably after the last glaciation period) and a recent range expansion likely from a single refuge. 相似文献
|