首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou Y  Jiang D  Thomason DB  Jarrett HW 《Biochemistry》2007,46(51):14907-14916
Binding of laminin to dystroglycan in the dystrophin glycoprotein complex causes signaling through dystroglycan-syntrophin-grb2-SOS1-Rac1-PAK1-JNK. Laminin binding also causes syntrophin tyrosine phosphorylation to initiate signaling. The kinase responsible was investigated here. PP2 and SU6656, specific inhibitors of Src family kinases, decreased the amount of phosphotyrosine syntrophin and decreased the level of active Rac1 in laminin-treated myoblasts, myotubes, or skeletal muscle microsomes. c-Src and c-Fyn both phosphorylate syntrophin, and inhibition of either with specific siRNAs diminishes the level of syntrophin phosphorylation. When the rat gastrocnemius was contracted, the level of Rac1 activation increased compared to that of the relaxed control muscle and Rac1 colocalized with beta-dystroglycan. Similar results were obtained when the muscle was stretched. Contracted muscle also contained more activated c-Jun N-terminal kinase, JNKp46. E3, an expressed protein containing only laminin domains LG4 and LG5, increased the rate of proliferation of myoblasts, and PP2 prevented cell proliferation. In addition, Src family kinases colocalized with activated Rac1 and with laminin-Sepharose in solid-phase binding assays. Thus, contraction, stretching, or laminin binding causes recruitment of Src family kinase to the dystrophin glycoprotein complex, activating Rac1 and inducing downstream signaling. The DGC likely represents a mechanoreceptor in skeletal muscle-regulating muscle growth in response to muscle activity. Src family kinases play an initiating and critical role.  相似文献   

2.
Oak SA  Russo K  Petrucci TC  Jarrett HW 《Biochemistry》2001,40(37):11270-11278
Syntrophins have been proposed to serve as adapter proteins. Syntrophins are found in the dystrophin glycoprotein complex (DGC); defects in the constituents of this complex are linked to various muscular dystrophies. Blot overlay experiments demonstrate that alpha-dystroglycan, beta-dystroglycan, and syntrophins all bind Grb2, the growth factor receptor bound adapter protein. Mouse alpha1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to also bind Grb2 in a Ca2+-independent manner. This binding was localized to the proline rich sequences adjacent to and overlapping with the N-terminal pleckstrin homology domain (PH1). Grb2 bound syntrophin with an apparent KD of 563 +/- 15 nM. Grb2-C-SH3 domain bound syntrophin with slightly higher affinity than Grb2-N-SH3 domain. Crk-L, an SH2/SH3 protein of similar domain structure but different specificity, does not bind these syntrophin sequences.  相似文献   

3.
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.  相似文献   

4.
The dystrophin glycoprotein complex has been proposed to be involved in signal transduction. Here we have shown that laminin binding causes syntrophin to recruit Rac1 from the rabbit skeletal muscle. Laminin-Sepharose and syntrophin-Sepharose bind a protein complex containing Rac1 from the muscle membranes. The presence of heparin, which inhibits laminin interactions, prevents recruitment of Rac1. The dystrophin glycoprotein complex recruits Rac1 via syntrophin through a Grb2.Sos1 complex. A syntrophin antibody also prevents recruitment of Rac1, suggesting that the signaling complex requires syntrophin. PAK1 is in turn bound by Rac1. c-Jun NH2-terminal kinase-p46 is phosphorylated and activated only when laminin is present, and the p54 isoform is activated when laminin is depleted or binding is inhibited with heparin. In the presence of laminin, c-Jun is activated in both skeletal muscle microsomes and in C2C12 myoblasts, and proliferation increases in C2C12 myoblasts. We postulate that this pathway signals muscle homeostasis and hypertrophy.  相似文献   

5.
The laminin G-like (LG) domains of laminin-111, a glycoprotein widely expressed during embryogenesis, provide cell anchoring and receptor binding sites that are involved in basement membrane assembly and cell signaling. We now report the crystal structure of the laminin alpha1LG4-5 domains and provide a mutational analysis of heparin, alpha-dystroglycan, and galactosylsulfatide binding. The two domains of alpha1LG4-5 are arranged in a V-shaped fashion similar to that observed with laminin alpha2 LG4-5 but with a substantially different interdomain angle. Recombinant alpha1LG4-5 binding to heparin, alpha-dystroglycan, and sulfatides was dependent upon both shared and unique contributions from basic residues distributed in several clusters on the surface of LG4. For heparin, the greatest contribution was detected from two clusters, 2719RKR and 2791KRK. Binding to alpha-dystroglycan was particularly dependent on basic residues within 2719RKR, 2831RAR, and 2858KDR. Binding to galactosylsulfatide was most affected by mutations in 2831RAR and 2766KGRTK but not in 2719RKR. The combined analysis of structure and activities reveal differences in LG domain interactions that should enable dissection of biological roles of different laminin ligands.  相似文献   

6.
The adhesive interactions of cells with laminins are mediated by integrins and non-integrin-type receptors such as alpha-dystroglycan and syndecans. Laminins bind to these receptors at the C-terminal globular domain of their alpha chains, but the regions recognized by these receptors have not been mapped precisely. In this study, we sought to locate the binding sites of laminin-10 (alpha5beta1gamma1) for alpha(3)beta(1) and alpha(6)beta(1) integrins and alpha-dystroglycan through the production of a series of recombinant laminin-10 proteins with deletions of the LG (laminin G-like) modules within the globular domain. We found that deletion of the LG4-5 modules did not compromise the binding of laminin-10 to alpha(3)beta(1) and alpha(6)beta(1) integrins but completely abrogated its binding to alpha-dystroglycan. Further deletion up to the LG3 module resulted in loss of its binding to the integrins, underlining the importance of LG3 for integrin binding by laminin-10. When expressed individually as fusion proteins with glutathione S-transferase or the N-terminal 70-kDa region of fibronectin, only LG4 was capable of binding to alpha-dystroglycan, whereas neither LG3 nor any of the other LG modules retained the ability to bind to the integrins. Site-directed mutagenesis of the LG3 and LG4 modules indicated that Asp-3198 in the LG3 module is involved in the integrin binding by laminin-10, whereas multiple basic amino acid residues in the putative loop regions are involved synergistically in the alpha-dystroglycan binding by the LG4 module.  相似文献   

7.
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.  相似文献   

8.
A variety of intracellular signaling pathways are linked to cell surface receptor signaling through their recruitment by Src homology 2 (SH2)/SH3-containing adapter molecules. p21-activated kinase 1 (PAK1) is an effector of Rac/Cdc42 GTPases that has been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. In this study, we describe the specific interaction of PAK1 with the Grb2 adapter protein both in vitro and in vivo. We identify the site of this interaction as the second proline-rich SH3 binding domain of PAK1. Stimulation of the epidermal growth factor receptor (EGFR) in HaCaT cells enhances the level of EGFR-associated PAK1 and Grb2, although the PAK1-Grb2 association is itself independent of this stimulation. A cell-permeant TAT-tagged peptide encompassing the second proline-rich SH3 binding domain of PAK1 simultaneously blocked Grb2 and activated EGFR association with PAK1, in vitro and in vivo, indicating that Grb2 mediates the interaction of PAK1 with the activated EGFR. Blockade of this interaction decreased the epidermal growth factor-induced extension of membrane lamellae. Thus Grb2 may serve as an important mechanism for linking downstream PAK signaling to various upstream pathways.  相似文献   

9.
The laminins are large heterotrimeric glycoproteins with fundamental roles in basement membrane architecture and function. The C-terminus of the laminin alpha chain contains a tandem of five laminin G-like (LG) domains. We report the 2.0 A crystal structure of the laminin alpha2 LG4-LG5 domain pair, which harbours binding sites for heparin and the cell surface receptor alpha-dystroglycan, and is 41% identical to the laminin alpha1 E3 fragment. LG4 and LG5 are arranged in a V-shaped fashion related by a 110 degrees rotation about an axis passing near the domain termini. An extended N-terminal segment is disulfide bonded to LG5 and stabilizes the domain pair. Two calcium ions, one each in LG4 and LG5, are located 65 A apart at the tips of the domains opposite the polypeptide termini. An extensive basic surface region between the calcium sites is proposed to bind alpha-dystroglycan and heparin. The LG4-LG5 structure was used to construct a model of the laminin LG1-LG5 tandem and interpret missense mutations underlying protein S deficiency.  相似文献   

10.
The alpha2-laminin subunit contributes to basement membrane functions in muscle, nerve, and other tissues, and mutations in its gene are causes of congenital muscular dystrophy. The alpha2 G-domain modules, mutated in several of these disorders, are thought to mediate different cellular interactions. To analyze these contributions, we expressed recombinant laminin-2 (alpha(2)beta(1)gamma(1)) with LG4-5, LG1-3, and LG1-5 modular deletions. Wild-type and LG4-5 deleted-laminins were isolated from medium intact and cleaved within LG3 by a furin-like convertase. Myoblasts adhered predominantly through LG1-3 while alpha-dystroglycan bound to both LG1-3 and LG4-5. Recombinant laminin stimulated acetylcholine receptor (AChR) clustering; however, clustering was induced only by the proteolytic processed form, even in the absence of LG4-5. Furthermore, clustering required alpha(6)beta(1) integrin and alpha-dystroglycan binding activities available on LG1-3, acting in concert with laminin polymerization. The ability of the modified laminins to mediate basement membrane assembly was also evaluated in embryoid bodies where it was found that both LG1-3 and LG4-5, but not processing, were required. In conclusion, there is a division of labor among LG-modules in which (i) LG4-5 is required for basement membrane assembly but not for AChR clustering, and (ii) laminin-induced AChR clustering requires furin cleavage of LG3 as well as alpha-dystroglycan and alpha(6)beta(1) integrin binding.  相似文献   

11.
The laminin-type globular (LG) domains of laminin alpha chains have been implicated in various cellular interactions that are mediated through receptors such as integrins, alpha-dystroglycan, syndecans, and the Lutheran blood group glycoprotein (Lu). Lu, an Ig superfamily transmembrane receptor specific for laminin alpha5, is also known as basal cell adhesion molecule (B-CAM). Although Lu/B-CAM binds to the LG domain of laminin alpha5, the binding site has not been precisely defined. To better delineate this binding site, we produced a series of recombinant laminin trimers containing modified alpha chains, such that all or part of alpha5LG was replaced with analogous segments of human laminin alpha1LG. In solid phase binding assays using a soluble Lu (Lu-Fc) composed of the Lu extracellular domain and human IgG1 Fc, we found that Lu bound to Mr5G3, a recombinant laminin containing alpha5 domains LN through LG3 fused to human laminin alpha1LG4-5. However, Lu/B-CAM did not bind other recombinant laminins containing alpha5LG3 unless alpha5LG1-2 was also present. A recombinant alpha5LG1-3 tandem lacking the laminin coiled coil (LCC) domain did not reproduce the activity of Lu/B-CAM binding. Therefore, proper structure of the alpha5LG1-3 tandem with the LCC domain was essential for the binding of Lu/B-CAM to laminin alpha5. Our results also suggest that the binding site for Lu/B-CAM on laminin alpha5 may overlap with that of integrins alpha3beta1 and alpha6beta1.  相似文献   

12.
The C-terminal G domain of the mouse laminin alpha2 chain consists of five lamin-type G domain (LG) modules (alpha2LG1 to alpha2LG5) and was obtained as several recombinant fragments, corresponding to either individual modules or the tandem arrays alpha2LG1-3 and alpha2LG4-5. These fragments were compared with similar modules from the laminin alpha1 chain and from the C-terminal region of perlecan (PGV) in several binding studies. Major heparin-binding sites were located on the two tandem fragments and the individual alpha2LG1, alpha2LG3 and alpha2LG5 modules. The binding epitope on alpha2LG5 could be localized to a cluster of lysines by site-directed mutagenesis. In the alpha1 chain, however, strong heparin binding was found on alpha1LG4 and not on alpha1LG5. Binding to sulfatides correlated to heparin binding in most but not all cases. Fragments alpha2LG1-3 and alpha2LG4-5 also bound to fibulin-1, fibulin-2 and nidogen-2 with Kd = 13-150 nM. Both tandem fragments, but not the individual modules, bound strongly to alpha-dystroglycan and this interaction was abolished by EDTA but not by high concentrations of heparin and NaCl. The binding of perlecan fragment PGV to alpha-dystroglycan was even stronger and was also not sensitive to heparin. This demonstrated similar binding repertoires for the LG modules of three basement membrane proteins involved in cell-matrix interactions and supramolecular assembly.  相似文献   

13.
Laminin-2 promotes basement membrane assembly and peripheral myelinogenesis; however, a receptor-binding motif within laminin-2 and the downstream signaling pathways for motif-mediated cell adhesion have not been fully established. The human laminin-2 α2 chain cDNAs cloned from human keratinocytes and fibroblasts correspond to the laminin α2 chain variant sequence from the human brain. Individually expressed recombinant large globular (LG) 1 protein promotes cell adhesion and has heparin binding activities. Studies with synthetic peptides delineate the DLTIDDSYWYRI motif (Ln2-P3) within the LG1 as a major site for both heparin and cell binding. Cell adhesion to LG1 and Ln2-P3 is inhibited by treatment of heparitinase I and chondroitinase ABC. Syndecan-1 from PC12 cells binds to LG1 and Ln2-P3 and colocalizes with both molecules. Suppression of syndecan-1 with RNA interference inhibits cell adhesion to LG1 and Ln2-P3. The binding of syndecan-1 with LG1 and Ln2-P3 induces the recruitment of protein kinase Cδ (PKCδ) into the membrane and stimulates its tyrosine phosphorylation. A decrease in PKCδ activity significantly reduces cell adhesion to LG1 and Ln2-P3. Taken together, these results indicate that the Ln2-P3 motif and LG1 domain, containing the motif, within the human laminin-2 α2 chain are major ligands for syndecan-1, which mediates cell adhesion through the PKCδ signaling pathway.  相似文献   

14.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

15.
The 395-residue proteolytic fragment E3, which comprises the two most C-terminal LG modules of the mouse laminin alpha1 chain, was previously shown to contain major binding sites for heparin, alpha-dystroglycan and sulfatides. The same fragment (alpha1LG4-5) and its individual alpha1LG4 and alpha1LG5 modules have now been obtained by recombinant production in mammalian cells. These fragments were apparently folded into a native form, as shown by circular dichroism, electron microscopy and immunological assays. Fragment alpha1LG4-5 bound about five- to tenfold better to heparin, alpha-dystroglycan and sulfatides than E3. These binding activities could be exclusively localized to the alpha1LG4 module. Side-chain modifications and proteolysis demonstrated that Lys and Arg residues in the C-terminal region of alpha1LG4 are essential for heparin binding. This was confirmed by 14 single to triple point mutations, which identified three non-contiguous basic regions (positions 2766-2770, 2791-2793, 2819-2820) as contributing to both heparin and sulfatide binding. Two of these regions were also recognized by monoclonal antibodies which have previously been shown to inhibit heparin binding. The same three regions and a few additional basic residues also make major contributions to the binding of the cellular receptor alpha-dystroglycan, indicating a larger binding epitope. The data are also consistent with previous findings that heparin competes for alpha-dystroglycan binding.  相似文献   

16.
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.  相似文献   

17.
The B class cell-attached ephrins mediate contact-dependent cell-cell communications and transduce the contact signals to the host cells through the binding interactions of their cytoplasmic domains. Two classes of intracellular effectors of B ephrins have been identified: one contains the PSD-95/Dlg/ZO-1 (PDZ) domain (for example PDZ-RGS3), and the second the Src homology 2 (SH2) domain (e.g. the Grb4 adaptor protein). The interaction with Grb4 requires phosphorylation of tyrosine residues on the conserved cytoplasmic C-terminal region of B ephrins, while binding to the PDZ domain is independent of tyrosine phosphorylation. However, the exact phosphorylation site(s) required for signaling remained obscure and it is also unknown whether the two classes of effectors can bind to B ephrins simultaneously or if the binding of one affects the binding of the other. We report here that phosphorylation of Tyr304 in the functional C-terminal region (residues 301-333) of ephrin B2 confers high-affinity binding to the SH2 domain of the Grb4 protein. Tyrosine phosphorylation at other candidate sites resulted in only minor change of the binding of Tyr304-phosphorylated ephrin B peptide (i.e. ephrinB2(301-333)-pY304) with the SH2 domain. (1)H-(15)N NMR HSQC experiments show that only the ephrinB2(301-333)-pY304 peptide forms a stable and specific binding complex with the SH2 domain of Grb4. The SH2 and PDZ domains were found to bind to the Tyr304 phosphopeptide both independently and at the same time, forming a three-component molecular complex. Taken together, our studies identify a novel SH2 domain binding motif, PHpY304EKV, on the cytoplasmic domains of B ephrins that may be essential for reverse signaling via the Grb4 adaptor protein alone or in concert with proteins containing PDZ domains.  相似文献   

18.
Using the cytoplasmic domain of fibroblast growth factor receptor 1 (FGFR1) as bait in a yeast two-hybrid screen, Grb14 was identified as a FGFR1 binding partner. A kinase-inactive mutant of FGFR1 failed to interact with Grb14, indicating that activation of FGFR1 is necessary for binding. Deletion of the C-tail or mutation of both C-tail tyrosine residues of FGFR1 to phenylalanine abolished binding, and deletion of the juxtamembrane domain of the receptor reduced binding, suggesting that Grb14 binds to FGFR1 at multiple sites. Co-immunoprecipitation and in vitro binding assays demonstrated that binding of Grb14 to FGFR1 in mammalian cells was dependent on receptor activation by fibroblast growth factor-2 (FGF-2). Deletion of the Src homology 2 (SH2) domain of Grb14 reduced but did not block binding to FGFR1 and eliminated dependence on receptor activation. The SH2 domain alone bound both FGFR1 and platelet-derived growth factor receptor, whereas full-length Grb14 bound only FGFR1, suggesting that regions upstream of the SH2 domain confer specificity for FGFR1. Grb14 was phosphorylated on serine and threonine residues in unstimulated cells, and treatment with FGF-2 enhanced this phosphorylation. Expression of exogenous Grb14 inhibited FGF-2-induced cell proliferation, whereas a point-mutated form of Grb14 incapable of binding to FGFR1 enhanced FGF-2-induced mitogenesis. These data demonstrate an interaction between activated FGFR1 and Grb14 and suggest a role for Grb14 in FGF signaling.  相似文献   

19.
In an attempt to elucidate the integrin-binding site within laminin-511 (alpha5beta1gamma1), we mapped the epitope for mAb 4C7, which recognizes the globular (G) domain of the laminin alpha5 chain and inhibits binding of integrin alpha6beta1 to laminin-511, using a series of recombinant laminin-511 mutants with deletions or substitutions in the G domain. Deletion of the LG2-5 modules only partially compromised the 4C7 binding activity, while deletion of all 5 LG modules completely abrogated the activity, indicating that the epitope for 4C7 resides in the LG1 module. In support of this conclusion, 4C7 reactivity was abolished when the LG1 module of laminin-511 was swapped with the corresponding module of laminin-111, but the reactivity was retained after swapping the LG2 or LG3 module. Despite the requirement of LG1 for 4C7 binding, a recombinant LG1 module failed to bind to 4C7 when expressed alone or in tandem with LG2, but exhibited significant 4C7 binding activity when expressed as an array of LG1-3. These results indicate that 4C7 recognizes an epitope in the LG1 module, whose active conformation is stabilized in the context of the LG1-3 modules. Despite their 4C7 binding activities, neither the recombinant LG1-3 fragment nor the LG2 and LG3 swap mutants were capable of binding to integrin alpha6beta1. Thus, the integrin binding activity does not necessarily parallel the 4C7 reactivity, and possibly requires a strictly defined conformation of the LG1 module which can only be attained within an array of the intact LG1-3 modules connected to the preceding coiled-coil domain.  相似文献   

20.
Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the β-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号