首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Modelling the dynamics of biosystems   总被引:3,自引:0,他引:3  
The need for a more formal handling of biological information processing with stochastic and mobile process algebras is addressed. Biology can benefit this approach, yielding a better understanding of behavioural properties of cells, and computer science can benefit this approach, obtaining new computational models inspired by nature.  相似文献   

2.
Genetic regulatory networks usually encompass a multitude of complex, interacting feedback loops. Being able to model and analyze their behavior is crucial for understanding their function. However, state space explosion is becoming a limiting factor in the formal analysis of genetic networks. This paper explores a modular approach for verification of reachability properties. A framework for component-based modeling of genetic regulatory networks, based on a modular discrete abstraction, is introduced. Then a compositional algorithm to efficiently analyze reachability properties of the model is proposed. A case study on embryonic cell differentiation involving several hundred cells shows the potential of this approach.  相似文献   

3.
Building a meaningful model of biological regulatory network is usually done by specifying the components (e.g. the genes) and their interactions, by guessing the values of parameters, by comparing the predicted behaviors to the observed ones, and by modifying in a trial-error process both architecture and parameters in order to reach an optimal fitness. We propose here a different approach to construct and analyze biological models avoiding the trial-error part, where structure and dynamics are represented as formal constraints. We apply the method to Hopfield-like networks, a formalism often used in both neural and regulatory networks modeling. The aim is to characterize automatically the set of all models consistent with all the available knowledge (about structure and behavior). The available knowledge is formalized into formal constraints. The latter are compiled into Boolean formula in conjunctive normal form and then submitted to a Boolean satisfiability solver. This approach allows to formulate a wide range of queries, expressed in a high level language, and possibly integrating formalized intuitions. In order to explore its potential, we use it to find cycles for 3-nodes networks and to determine the flower morphogenesis regulatory network of Arabidopsis thaliana. Applications of this technique are numerous and concern the building of models from data as well as the design of biological networks possessing specified behaviors.  相似文献   

4.
5.
The biological and dynamical importance of feedback circuits in regulatory graphs has often been emphasized. The work presented here aims at completely describing the dynamics of isolated elementary regulatory circuits. Our analytical approach is based on a discrete formal framework, built upon the logical approach of R. Thomas. Given a regulatory circuit, we show that the structure of synchronous and asynchronous dynamical graphs depends only on the length of the circuit (number of genes) and on its sign (which depends on the parity of the number of negative interactions). This work constitutes a first step towards the analytical characterisation of discrete dynamical graphs for more complex regulatory networks in terms of contributions corresponding to their embedded elementary circuits.  相似文献   

6.
MOTIVATION: To understand the behaviour of complex biological regulatory networks, a proper integration of molecular data into a full-fledge formal dynamical model is ultimately required. As most available data on regulatory interactions are qualitative, logical modelling offers an interesting framework to delineate the main dynamical properties of the underlying networks. RESULTS: Transposing a generic model of the core network controlling the mammalian cell cycle into the logical framework, we compare different strategies to explore its dynamical properties. In particular, we assess the respective advantages and limits of synchronous versus asynchronous updating assumptions to delineate the asymptotical behaviour of regulatory networks. Furthermore, we propose several intermediate strategies to optimize the computation of asymptotical properties depending on available knowledge. AVAILABILITY: The mammalian cell cycle model is available in a dedicated XML format (GINML) on our website, along with our logical simulation software GINsim (http://gin.univ-mrs.fr/GINsim). Higher resolution state transitions graphs are also found on this web site (Model Repository page).  相似文献   

7.
Executable cell biology   总被引:4,自引:0,他引:4  
Computational modeling of biological systems is becoming increasingly important in efforts to better understand complex biological behaviors. In this review, we distinguish between two types of biological models--mathematical and computational--which differ in their representations of biological phenomena. We call the approach of constructing computational models of biological systems 'executable biology', as it focuses on the design of executable computer algorithms that mimic biological phenomena. We survey the main modeling efforts in this direction, emphasize the applicability and benefits of executable models in biological research and highlight some of the challenges that executable biology poses for biology and computer science. We claim that for executable biology to reach its full potential as a mainstream biological technique, formal and algorithmic approaches must be integrated into biological research. This will drive biology toward a more precise engineering discipline.  相似文献   

8.
Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach--qualitative Petri nets, and quantitative approaches--continuous Petri nets and ordinary differential equations (ODEs). We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present a number of novel computational tools that can help to explore alternative modular models in an easy and intuitive manner. These tools, which are based on Petri net theory, offer convenient ways of composing hierarchical ODE models, and permit a qualitative analysis of their behaviour. We illustrate the central concepts using signal transduction as our main example. The ultimate aim is to introduce a general approach that provides the foundations for a structured formal engineering of large-scale models of biochemical networks.  相似文献   

9.
Discovering gene networks with a neural-genetic hybrid   总被引:1,自引:0,他引:1  
Recent advances in biology (namely, DNA arrays) allow an unprecedented view of the biochemical mechanisms contained within a cell. However, this technology raises new challenges for computer scientists and biologists alike, as the data created by these arrays is often highly complex. One of the challenges is the elucidation of the regulatory connections and interactions between genes, proteins and other gene products. In this paper, a novel method is described for determining gene interactions in temporal gene expression data using genetic algorithms combined with a neural network component. Experiments conducted on real-world temporal gene expression data sets confirm that the approach is capable of finding gene networks that fit the data. A further repeated approach shows that those genes significantly involved in interaction with other genes can be highlighted and hypothetical gene networks and circuits proposed for further laboratory testing.  相似文献   

10.
Attribution of biological robustness to the specific structural properties of a regulatory network is an important yet unsolved problem in systems biology. It is widely believed that the topological characteristics of a biological control network largely determine its dynamic behavior, yet the actual mechanism is still poorly understood. Here, we define a novel structural feature of biological networks, termed ‘regulation entropy’, to quantitatively assess the influence of network topology on the robustness of the systems. Using the cell-cycle control networks of the budding yeast (Saccharomyces cerevisiae) and the fission yeast (Schizosaccharomyces pombe) as examples, we first demonstrate the correlation of this quantity with the dynamic stability of biological control networks, and then we establish a significant association between this quantity and the structural stability of the networks. And we further substantiate the generality of this approach with a broad spectrum of biological and random networks. We conclude that the regulation entropy is an effective order parameter in evaluating the robustness of biological control networks. Our work suggests a novel connection between the topological feature and the dynamic property of biological regulatory networks.  相似文献   

11.

Background

Numerous cellular differentiation processes can be captured using discrete qualitative models of biological regulatory networks. These models describe the temporal evolution of the state of the network subject to different competing transitions, potentially leading the system to different attractors. This paper focusses on the formal identification of states and transitions that are crucial for preserving or pre-empting the reachability of a given behaviour.

Methods

In the context of non-deterministic automata networks, we propose a static identification of so-called bifurcations, i.e., transitions after which a given goal is no longer reachable. Such transitions are naturally good candidates for controlling the occurrence of the goal, notably by modulating their propensity. Our method combines Answer-Set Programming with static analysis of reachability properties to provide an under-approximation of all the existing bifurcations.

Results

We illustrate our discrete bifurcation analysis on several models of biological systems, for which we identify transitions which impact the reachability of given long-term behaviour. In particular, we apply our implementation on a regulatory network among hundreds of biological species, supporting the scalability of our approach.

Conclusions

Our method allows a formal and scalable identification of transitions which are responsible for the lost of capability to reach a given state. It can be applied to any asynchronous automata networks, which encompass Boolean and multi-valued models. An implementation is provided as part of the Pint software, available at http://loicpauleve.name/pint.
  相似文献   

12.
One fundamental concept in the context of biological systems on which researches have flourished in the past decade is that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling them by boundary conditions. This article presents a generic mathematical approach to understand the influence of boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally.  相似文献   

13.
Network thinking in ecology and evolution   总被引:1,自引:0,他引:1  
Although pairwise interactions have always had a key role in ecology and evolutionary biology, the recent increase in the amount and availability of biological data has placed a new focus on the complex networks embedded in biological systems. The increased availability of computational tools to store and retrieve biological data has facilitated wide access to these data, not just by biologists but also by specialists from the social sciences, computer science, physics and mathematics. This fusion of interests has led to a burst of research on the properties and consequences of network structure in biological systems. Although traditional measures of network structure and function have started us off on the right foot, an important next step is to create biologically realistic models of network formation, evolution, and function. Here, we review recent applications of network thinking to the evolution of networks at the gene and protein level and to the dynamics and stability of communities. These studies have provided new insights into the organization and function of biological systems by applying existing techniques of network analysis. The current challenge is to recognize the commonalities in evolutionary and ecological applications of network thinking to create a predictive science of biological networks.  相似文献   

14.
The human red blood cell (hRBC) metabolic network is relatively simple compared with other whole cell metabolic networks, yet too complicated to study without the aid of a computer model. Systems science techniques can be used to uncover the key dynamic features of hRBC metabolism. Herein, we have studied a full dynamic hRBC metabolic model and developed several approaches to identify metabolic pools of metabolites. In particular, we have used phase planes, temporal decomposition, and statistical analysis to show hRBC metabolism is characterized by the formation of pseudoequilibrium concentration states. Such equilibria identify metabolic "pools" or aggregates of concentration variables. We proceed to define physiologically meaningful pools, characterize them within the hRBC, and compare them with those derived from systems engineering techniques. In conclusion, systems science methods can decipher detailed information about individual enzymes and metabolites within metabolic networks and provide further understanding of complex biological networks.  相似文献   

15.
Modeling and simulation of genetic regulatory systems: a literature review.   总被引:22,自引:0,他引:22  
In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between DNA, RNA, proteins, and small molecules. As most genetic regulatory networks of interest involve many components connected through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. As a consequence, formal methods and computer tools for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential equations, qualitative differential equations, stochastic equations, and rule-based formalisms. In addition, the paper discusses how these formalisms have been used in the simulation of the behavior of actual regulatory systems.  相似文献   

16.
As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.  相似文献   

17.
The manipulation of organisms using combinations of gene knockout, RNAi and drug interaction experiments can be used to reveal regulatory interactions between genes. Several algorithms have been proposed that try to reconstruct the underlying regulatory networks from gene expression data sets arising from such experiments. Often these approaches assume that each gene has approximately the same number of interactions within the network, and the methods rely on prior knowledge, or the investigator's best guess, of the average network connectivity. Recent evidence points to scale-free properties in biological networks, however, where network connectivity follows a power-law distribution. For scale-free networks, the average number of regulatory interactions per gene does not satisfactorily characterise the network. With this in mind, a new reverse engineering approach is introduced that does not require prior knowledge of network connectivity and its performance is compared with other published algorithms using simulated gene expression data with biologically relevant network structures. Because this new approach does not make any assumptions about the distribution of network connections, it is suitable for application to scale-free networks.  相似文献   

18.
19.
The identification of network motifs has been widely considered as a significant step towards uncovering the design principles of biomolecular regulatory networks. To date, time‐invariant networks have been considered. However, such approaches cannot be used to reveal time‐specific biological traits due to the dynamic nature of biological systems, and hence may not be applicable to development, where temporal regulation of gene expression is an indispensable characteristic. We propose a concept of a “temporal sequence of network motifs”, a sequence of network motifs in active sub‐networks constructed over time, and investigate significant network motifs in the active temporal sub‐networks of Drosophila melanogaster . Based on this concept, we find a temporal sequence of network motifs which changes according to developmental stages and thereby cannot be identified from the whole static network. Moreover, we show that the temporal sequence of network motifs corresponding to each developmental stage can be used to describe pivotal developmental events.  相似文献   

20.
A knowledge model for analysis and simulation of regulatory networks   总被引:5,自引:0,他引:5  
MOTIVATION: In order to aid in hypothesis-driven experimental gene discovery, we are designing a computer application for the automatic retrieval of signal transduction data from electronic versions of scientific publications using natural language processing (NLP) techniques, as well as for visualizing and editing representations of regulatory systems. These systems describe both signal transduction and biochemical pathways within complex multicellular organisms, yeast, and bacteria. This computer application in turn requires the development of a domain-specific ontology, or knowledge model. RESULTS: We introduce an ontological model for the representation of biological knowledge related to regulatory networks in vertebrates. We outline a taxonomy of the concepts, define their 'whole-to-part' relationships, describe the properties of major concepts, and outline a set of the most important axioms. The ontology is partially realized in a computer system designed to aid researchers in biology and medicine in visualizing and editing a representation of a signal transduction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号