首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodine and iron are essential elements for healthy thyroid function. However, little is known about the association of iron and iodine with thyroid function in the general US population. We investigated iron and iodine status in relation to concentrations of thyroid hormones. We included 7672 participants aged 20 and older from three surveys (2007–2008, 2009–2010, and 2011–2012) of the National Health and Nutrition Examination Survey. Serum thyroid measures (including free and total T3 and T4, and TSH), serum iron concentration, and urinary iodine concentrations were measured. Multivariate linear regression models were conducted with serum thyroid measures as dependent variables and combinations of serum iron concentration and urinary iodine concentration as predictors with covariate adjustment. Logistic regression models were performed with TSH levels (low, normal, and high) and combinations of serum iron concentration and urinary iodine concentration. Overall, 10.9% of the study population had low iron; 32.2 and 18.8% had low or high iodine levels, respectively. Compared with normal levels of iron and iodine, normal iron and high iodine were associated with reduced free T3 and increased risk of abnormal high TSH. Combined low iron and low iodine was associated with reduced free T3 and increased TSH. In addition, high iodine was associated with increased risk of abnormal high TSH in females but not in males. Thyroid function may be disrupted by low levels of iron or abnormal iodine, and relationships are complex and sex-specific. Large prospective studies are needed to understand the mechanisms by which iron interacts with iodine on thyroid function.  相似文献   

2.
《Endocrine practice》2010,16(2):187-190
ObjectiveTo determine the prevalence of elevated thyroid-stimulating hormone (TSH) levels in obese children and adolescents referred to pediatric endocrinology clinics.MethodsWe undertook a retrospective review of medical records of 191 obese and 125 nonobese children (younger than 18 years old). Data about age, sex, body mass index, TSH, thyroid functions, thyroid antibodies, thyroid size, and medications were collected.ResultsSix obese patients had Hashimoto disease and TSH values from 0.73 to 12.73 mIU/L; they were excluded from the study analyses. Of the remaining 185 obese subjects, 20 (10.8%) had TSH levels > 4 mIU/L, but no control subject measurement exceeded this TSH value. The highest TSH concentration in an obese study subject was 7.51 mIU/L. When obese children with TSH levels > 4 mIU/L were classified in a third group, the mean TSH in the rest of the obese children was comparable with that in the control group (1.98 ± 0.84 [SD] and 1.95 ± 0.80 mIU/L, respectively; post hoc analysis of variance, P = .945). Obese subjects with increased TSH values had a mean body mass index similar to that for obese subjects with normal TSH levels (34.98 ± 6.12 [SD] and 34.29 ± 7.84 kg/m2, respectively).ConclusionMild elevation of TSH values in the absence of autoimmune thyroid disease is not uncommon in some obese children and adolescents. This is the second study in the United States to report this observation. Our study did not identify any special characteristics of obese subjects with TSH elevation in comparison with obese children with normal TSH levels and the control group. Current medical knowledge does not support routine screening for thyroid dysfunction in obese children. (Endocr Pract. 2010;16:187-190)  相似文献   

3.
The objective of this study was to investigate oxidative DNA damage, and the levels of antioxidant enzymes (AOE) and selenium (Se) in relation to iodine deficiency and/or goiter in children. The study was performed in a group of goitrous high school children (15-18 years of age) ( n =14) with severe or moderate iodine deficiency. Thyroid hormones (TSH, FT 4 , TT 4 , FT 3 , TT 3 ), urinary iodine (UI) and plasma Se levels, and erythrocyte glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were determined and compared with those of a control group consisting of non-goitrous high school children ( n =14) with normal UI levels or mild iodine deficiency. In the goitrous group, concentrations of FT 4 , TT 4 , plasma Se and UI, and activities of GSHPx and SOD were found to be significantly lower. Six typical hydroxyl radical-induced base lesions in genomic DNA of peripheral blood were identified and quantified by gas chromatography/isotope-dilution mass spectrometry (GC/IDMS), and higher levels of DNA base lesions were observed in the goitrous group. The results suggest that highly iodine-deficient goitrous children may be under oxidative stress, which may lead to greater level of oxidative damage to DNA. This study supports the evidence for the reported relationship between iodine deficiency and the increased incidence of thyroid malignancies.  相似文献   

4.
Although a relationship between obesity and hyperthyrotropinemia has been hypothesized in obese children, the underlying pathogenesis is not completely known. In the current cross-sectional study, we evaluated the thyroid function in a group of 80 obese pre-pubertal children compared to 41 healthy normal weight peers, exploring the possible association between hyperthyrotropinemia and oxidative stress. In all children, thyrotropin (TSH), free T4 (fT4), free T3 (fT3) and anti-thyroid antibodies were evaluated. Homeostatic model assessment of insulin resistance (HOMA-IR) level was evaluated as index of insulin resistance. We measured the endogenous secretory receptor for advanced glycation end products (esRAGE) and soluble RAGE (sRAGE) and the urinary prostaglandin F2α (PGF-2α) as markers of oxidative stress. We found that TSH levels were significantly higher in obese children than controls. TSH significantly correlated with body mass index-standard deviation score (BMI-SDS), HOMA-IR, PGF-2α, esRAGE and sRAGE. The multiple linear regression showed that in obese children HOMA-IR, PGF-2α, esRAGE and sRAGE were significantly related to TSH, independently of BMI-SDS, age and gender. In obese children, hyperthyrotropinemia could be detected already in pre-pubertal age. The increased oxidative stress might represent one of the key regulators of TSH levels, early in life.  相似文献   

5.
To investigate the thyroid function in Bio-Breeding Worcester (BB/W) rats, we have examined the iodine metabolism, serum TSH and thyroid hormone levels in 8- and 16-week-old BB/W and normal Wistar (W) rats. At 8 weeks of age, serum TSH levels were significantly higher in BB/W rats than in W rats, although there was no difference in the serum levels of free T3 and free T4. Furthermore, the thyroidal radioactive iodine incorporation at 48 h was significantly lower in BB/W rats, suggesting that they might have some defects in iodine organification. At 16 weeks of age, serum TSH levels were also significantly higher in BB/W rats than in W rats. Furthermore, serum TSH levels in 16-week-old BB/W rats were significantly higher than in 8-week-old BB/W rats. The thyroid weight was significantly greater in BB/W rats, probably due to the increased serum TSH. The thyroidal radioactive iodine uptake at 48 h and the iodine content in the thyroid homogenates were significantly lower in BB/W rats. These results suggest that BB/W rats have some defect in iodine metabolism resulting in impaired thyroid hormone synthesis.  相似文献   

6.
An excess of thyrotropin (TSH) with normal levels of tetraiodothyronine (T4) and of 3,5,3'-triiodothyronine (T3) was confirmed in the serum of 78 trisomy 21 children. A severe deficiency of 3,3',5'-triiodo-thyronine (rT3 or reverse T3) was observed and the decrease of the rT3/TSH ratio was highly significant. These new facts suggest that the rT3 deficiency plays a peculiar role in trisomy 21 (maybe through the regulation of one or few steps of monocarbons' metabolism). A systematic control of thyroid function (including the patient's rT3 level) is mandatory for the follow-up of every trisomy 21 patient.  相似文献   

7.
Studies on thyroid function in obesity yielded inconsistent results; high thyroid‐stimulating hormone (TSH) levels were generally shown; high free triiodothyronine (fT)‐3 or fT4 levels were described in some, but not in other studies. After weight loss, TSH and thyroid hormones have been described to either increase or decrease. Our aim was to describe TSH, fT3, and fT4 in obese subjects with normal thyroid function before and after durable and significant weight loss, obtained through laparoscopic gastric banding (LAGB), in comparison with nonobese subjects. TSH, fT3, fT4, and fT3/fT4 ratio (an index of D1 and D2 deiodinase activity), were evaluated in 99 healthy controls and in 258 obese subjects, at baseline and 6 months, 1 year, and 2 years after LAGB, together with indexes of glucose (glucose, insulin, homeostasis model assessment of insulin resistance index) and lipid (triglycerides, total and high‐density lipoprotein–cholesterol) metabolism, and anthropometric measures (BMI and waist circumference). Under basal conditions, TSH, fT3, and fT4 were all in the normal range, but higher in obese than in nonobese subjects, and fT3/fT4 ratio was normal; with weight loss, fT3 and fT3/fT4 ratio decreased in obese subjects, while fT4 increased and TSH remained steady; all values were again within the normal range. Albumin and cholesterol levels remained steady, while triglycerides, insulin, and homeostasis model assessment of insulin resistance decreased, and high‐density lipoprotein–cholesterol increased. These changes, however, do not modify TSH, letting us to hypothesize that the changes are due to a decrease of D1 and D2 deiodinase activities.  相似文献   

8.
In the present study, changes in thyroid follicular cell volume and its regulation have been investigated during the early involution of a hyperplastic goitre. Male Wistar rats were administered an iodine deficient diet for 6 months with propylthiouracil (PTU, 0.15%) during the last two months. At the end of iodine deficiency (day 0), some rats were killed and the others received a normal iodine diet. These rats were killed after different periods of iodine refeeding. Thyroid follicular cell volume was very high in hyperplastic gland whereas thyroid protein concentration was low. Thyroid follicular cell volume quickly decreased when rats were normally iodine refed, whereas thyroid protein concentration increased. Electron microscopal observations showed that thyroid follicular cells retained their endocrine aspect in hyperplastic state and throughout the iodine refeeding period. Using concomitant stereological and biochemical techniques, it is shown that the amount of cellular iodide and an unknown iodinated compound strongly increased during the early iodine refeeding. Plasma TSH was high on day 0 and remained at this level until day 8 whereas plasma T3 and T4 were low on day 0 and remained at this low level until day 4. The present data show that the involution of thyroid follicular cell volume is induced by iodide and mediated by an iodinated compound at least in the initial phase, and is independent of plasma TSH, T3, T4, so indicating the involvement of a thyroid autoregulatory mechanism. These changes in cell volume may be of importance in ion transport, i.e. in the metabolism of thyroid follicular cell during the early involution of the hyperplastic goitre.  相似文献   

9.
The aim of the present study was the observation of the frequency of antithyroid autoantibodies in the population in low endemic goitre area after mass iodine prophylaxis after the Chernobyl catastrophe and the estimation of TSH and thyroid hormones secretion in this population. On the basis of the investigations carried out we could conclude that the frequency of antithyroid autoantibodies in the population with confirmed endemic goitre is comparable to the frequency of antithyroid autoantibodies in the healthy population. ATA occurrence in children after iodine prophylaxis could confirm the hypothesis that thyroglobulin immunity is higher after iodine intake. The lower T3 concentration observed in the group with antithyroid autoantibodies suggests that autoantibodies may be involved in the thyroid hormones synthesis or peripheral conversion of thyroid hormones.  相似文献   

10.
Changes in ornithine decarboxylase (ODC) activity and in polyamine contents of the rat thyroid were studied under various experimental conditions. Methylthiouracil (MTU) treatment produced several-fold increases in the thyroid ODC activity and in the content of putrescine, spermidine and spermine within a week. While serum thyrotropin (TSH) levels increased gradually up to 3 weeks, the content of both putrescine and spermidine tended to reach a plateau after 2 weeks of the goitrogen treatment; spermine content continued to increase progressively for 3 weeks. Discontinuance of MTU at 7 days resulted in a rapid decline in the elevated thyroid ODC activity, followed by a diminution of putrescine, spermidine and RNA contents. Thyroidal putrescine, spermidine and RNA responded more sensitively to both introduction and withdrawal of TSH stimulation than thyroidal spermine and DNA. Excess iodide, having no effect on the basal level of thyroid ODC, suppressed the MTU-induced increase in this enzyme activity without affecting circulating TSH, thyroxine (T4) and triiodothyronine (T3) levels. There was a significant negative correlation between the ODC activity and intrathyroidal concentration of iodine in MTU-pretreated rats. Theophylline increased the thyroid weight and ODC activity when given to rats fed with a subeffective dose of MTU. Analyses of serum TSH, T4, T3 and of thyroidal iodine revealed that TSH-induced thyroid ODC activity was suppressed by increased circulating thyroid hormones and/or intrathyroidal iodine. Furthermore, it was suggested that thyroid hormones and excess iodide acted directly on the thyroid to alter polyamine biosynthesis, possibly by changing the responsiveness of the gland to TSH.  相似文献   

11.
In vivo experiments using a calcium deficient or a normal diet, proved that calcium enhance iodine entry and concentration into the thyroid gland of the rat and the intra-thyroidal T4 pool, T4 level in serum was also increased. Peripheral metabolism of T4, serum TSH levels and pituitary TSH contents were unaffected. Calcium has a local regulatory function on the thyroid gland.  相似文献   

12.
The response of the hypothalamic pituitary axis to chronic iodine deficiency was compared in male and female Sprague-Dawley rats. The animals were kept on a low iodine diet for 12 weeks. Blood samples as well as thyroid and pituitary weights were obtained every two weeks. Baseline values of thyroid weight and serum thyroxine (T4) were similar in both sexes. However, females had lower serum TSH and higher serum triiodothyronine (T3), pituitary weight and pituitary TSH content. After initiation of the low iodine diet, both sexes showed similar decreases in serum T4 and similar increases of serum TSH and thyroid weight. Serum T3, pituitary weight and TSH content remained higher in females throughout the study. Pituitary TSH was directly correlated with serum TSH in both sexes. When adjusted for pituitary TSH and analyzed by a stepwise regression analysis, serum TSH was lower in females suggesting a difference in TSH secretion between males and females. Our studies demonstrate significant sex differences in the regulation of TSH secretion and maintenance of serum T3 level in response to a chronic stimulus.  相似文献   

13.
To evaluate the role of perinatal thyroid status in the development of pituitary-thyroid axis regulation, we administered triiodothyronine to newborn rats for the first five days postpartum to achieve hyperthyroidism, or propylthiouracil perinatally to rat dams and pups from gestational day 17 through postnatal day 5 to achieve hypothyroidism. Plasma T4, T3, and TSH levels were determined from birth through 50 days postpartum. Administration of exogenous T3 produced the expected immediate suppression of plasma T4 and TSH, with recovery toward normal values beginning within days of discontinuing the T3 regimen. Plasma T3 values were markedly elevated during the period in which T3 was being given, but subsequently became subnormal, with deficits persisting into young adulthood. With the PTU regimen, plasma T4 and T3 levels were markedly suppressed through postnatal day 10, rose over the ensuing two weeks, but nevertheless showed significant deficits into adulthood. TSH levels in the immediate neonatal period were subnormal in the PTU group, despite the marked lowering of circulating thyroid hormones; TSH then rose dramatically to levels four times normal, subsiding to control values by the end of the first month. These results suggest that a critical period exists in which regulation of pituitary-thyroid axis function is programmed. During this phase, TSH secretion can be suppressed by excess thyroid hormones, but cannot be increased by hormone deficiencies. Perhaps more importantly, perinatal thyroid status "programs" its own future reactivity, so that early hypothyroidism results in reduced T4 and T3 levels in adulthood, despite normal levels of TSH.  相似文献   

14.
Thyroid function was studied in small for gestational age (SGA) or control newborn lambs. Neonatal changes in plasma concentrations of TSH, T3, rT3, total and free T4 were monitored, and thyroid scintigraphs were performed. Responsiveness of the hypothalamic-pituitary-thyroid axis to cold exposure and TRH or TSH administration was assessed. In addition, T4 and T3 kinetic studies were performed. In agreement with results obtained in babies, plasma T3, total T4 and free T4 concentrations were depressed in low birth weight animals, whereas TSH and rT3 levels were not affected. Thyroid size expressed relatively to the body weight was higher in SGA animals, thus suggesting that a partial compensation for low thyroid hormone levels had occurred during the fetal life. Plasma TSH and T4 concentrations increased by a same extent after exposure to cold and TRH or TSH administration in SGA and control lambs; however, the rise in T3 levels was depressed in the former in all stimulation tests. T3 and T4 production rates were similar in the two experimental groups. In SGA lambs, the metabolic clearance rate and the total distribution space of these two hormones were significantly increased; the fast T3 pool was higher, and the slow T3 pool lower than in control animals. All these results demonstrate that, despite low circulating thyroid hormone concentrations, SGA lambs are not hypothyroid. An increased T4 and T3 storage in the extravascular compartment is probably the major factor involved in the occurrence of this plasma deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
OBJECTIVE: To evaluate the long-term efficacy and possible side effects of low doses of iodized oil on iodine nutrition and thyroid function in endemic goiter in Romania. METHODS: Random selection of 214 schoolchildren aged 6-14 years. Serial measurements of urinary iodine, thyroid volume with ultrasound, serum concentrations of thyrotropin, free thyroxine, thyroglobulin and thyroid autoantibodies before and up to 2 years after the oral administration of 200 mg iodine in iodized oil. RESULTS: Urinary iodine concentrations indicated a moderate iodine deficiency before therapy, sharply increased soon after therapy and slowly decreased thereafter but remained within the normal range up to more than 1 year after therapy. The prevalence of goiter was 29% before the administration of iodized oil and 9% 1 year later. Thyroid function tests and autoantibodies were normal before and up to 2 years after therapy. CONCLUSION: A single dose of 200 mg iodine from oral Lipiodol appears adequate and safe for correcting moderate iodine deficiency in children.  相似文献   

16.
Hospitalized geriatric patients (N = 354) from an iodine-deficient area were screened with sensitive thyrotropin (TSH), free and total thyroxine (FT4, T4) and total triiodothyronine (T3) to determine the occurrence rate of clinical and subclinical thyroid dysfunction. The diagnostic value of the tests was compared to each other and to that of the thyrotropin-releasing-hormone test (TRH-test) in order to find the optimal first line screening test in geriatric patients. Clinical hyperthyroidism was found in 13, subclinical hyperthyroidism in 10, overt hypothyroidism in 6 and subclinical hypothyroidism in 8 cases. 20.6% of the patients were euthyroid but had subnormal TSH response to TRH, as a sign of possible thyroid autonomy. The low occurrence rate of clinical thyroid disorders (4.8%) does not justify the screening of geriatric patients in general, but the high probability of thyroid autonomy makes reasonable the investigation of every geriatric patient before iodine administration. Suppressed basal TSH and high FT4 were found to be both sensitive and specific in diagnosing clinical hyperthyroidism, but the predictive value was insufficient; elevated T4 and T3 are specific, but not sensitive. Basal TSH is sensitive, specific and has a good predictive value in diagnosing euthyroidism, whereas normal T4, FT4 or T3 are not specific enough for euthyroidism. Basal TSH is better as a first line test of thyroid function than FT4. A normal basal TSH confirms euthyroidism by itself. Other tests (TRH test, T4, FT4, T3) are necessary to elucidate the clinical importance of a subnormal or suppressed basal TSH.  相似文献   

17.
The weanling Wistar rats of iodine deficiency were divided into three groups for supplementation of different levels of iodine (iodine-excessive [IE], iodine-adequate [IA], and iodine-deficient [ID]), with a control group (C). The iodine content in the thyroid was determined by epithermal neutron activation analysis. The activities of 5′-deiodinase and 5-deiodinase in the brains were assayed by determining the conversion ratios of T4 to T3 and rT3, respectively. The thyroid hormones levels in serum were also tested. The results indicated that the ID group had a goiter containing a small amount of iodine, but the IE group had a slightly swollen thyroid with rich iodine; the concentration of iodine per unit mass of thyroid was lower in group IE than in groups IA and C. The highest 5′-deiodinase and lowest 5-deiodinase activities in group ID and the lowest 5′-deiodinase activity in group IE were found. The iodine deficiency or excess resulted in a compensated hypothyroid state. The results suggest that the iodine status and the deiodinases activities would become normal for the rats of iodine deficiency if adequate iodine is supplemented soon after birth. Meanwhile, it is also critical to avoid excessive intake of iodine to reduce the risk for overcorrecting.  相似文献   

18.
ObjectiveThe aim of our study was to assess the iodine status of Polish boys with severe autism compared to their healthy peers and evaluate the relationship between urinary iodine, thyroid hormones, body mass index and Autism Spectrum Disorder (ASD) symptomatology.Subjects and methodsTests were performed in 40 boys with ASD and 40 healthy boys, aged 2–17 from the same geographic region in Poland. Urinary iodine (UI), free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH), BMI, and individual symptoms measured by the Childhood Autism Rating Scale (CARS) were correlated.Validated ion chromatography method with pulsed amperometric detection was applied for the determination of urinary iodine after optimized alkaline digestion in a closed system assisted with microwaves.Results19 out of 40 children with ASD had mild to moderate iodine deficiency. Statistically significant lower levels of UI, fT3 and fT4 and higher levels of TSH were found in the autistic group when compared with the control group. Concentration of iodine in urine was negatively associated with clinician’s general impression for children between 11 and 17 years. Emotional response, adaptation to environmental change, near receptor responsiveness, verbal communication, activity level, and intellectual functioning are more associated with UI than other symptoms listed in CARS.ConclusionThe severity of certain symptoms in autism is associated with iodine status in maturing boys. Thyroid hormones were within normal reference ranges in both groups while urinary iodine was significantly lower in autistic boys suggesting that further studies into the nonhormonal role of iodine in autism are required.  相似文献   

19.
Despite the introduction of salt iodization programmes as national measures to control iodine deficiency, several European countries are still suffering from mild iodine deficiency (MID). In iodine sufficient or mildly iodine deficient areas, iodine deficiency during pregnancy frequently appears in case the maternal thyroid gland cannot meet the demand for increasing production of thyroid hormones (TH) and its effect may be damaging for the neurodevelopment of the foetus. MID during pregnancy may lead to hypothyroxinaemia in the mother and/or elevated thyroid-stimulating hormone (TSH) levels in the foetus, and these conditions have been found to be related to mild and subclinical cognitive and psychomotor deficits in neonates, infants and children. The consequences depend upon the timing and severity of the hypothyroxinaemia. However, it needs to be noted that it is difficult to establish a direct link between maternal iodine deficiency and maternal hypothyroxinaemia, as well as between maternal iodine deficiency and elevated neonatal TSH levels at birth. Finally, some studies suggest that iodine supplementation from the first trimester until the end of pregnancy may decrease the risk of cognitive and psychomotor developmental delay in the offspring.  相似文献   

20.
BackgroundDisorders of thyroid function have been inconsistently described in cystic fibrosis (CF) patients and in CF transmembrane regulator protein knockout animals. The literature lacks reports on iodine status of CF individuals. We hypothesize, that iodine deficiency is common in CF and account for abnormal thyroid function in CF patients.MethodsWe investigated 129 children, adolescents, and adults with CF, who were living in the northern part of Bavaria/Germany. Malnutrition and lung function were analyzed. Urinary iodine excretion, TSH (thyroid-stimulating hormone), and ft4 (free thyroxine) were measured and set in relation to population-based, age-adjusted reference ranges.ResultsSubclinical hypothyroidism (normal fT4, elevated TSH) was found in 11.6% of subjects, and iodine deficiency in 83.7%. No correlations were found with age, BMI, status of malnutrition, or lung function.ConclusionDramatic iodine deficiency was found in our cohort of CF patients. This condition can cause subclinical hypothyroidism; therefore, an individual iodine supplementation program is necessary and should be started immediately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号