首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pertussis toxin (PTx), an exotoxin of Bordetella pertussis has been used as a molecular probe to study stimulus-response coupling in a wide variety of cells. We have previously shown that PTx activates the same signal transduction pathways as Ag or mAb directed against the CD3-T cell Ag receptor complex in human T cells. Because the EC50 for mitogenic stimulation by PTx was 1.7 nM, we suspected that the toxin was specifically interacting with a membrane protein or receptor. We have used both chemical cross-linking and Western blotting techniques to demonstrate that PTx shows specific binding to a 43 kDa-membrane protein on cells that respond to PTx by rapid second messenger production. The PTx receptor can be detected in both the E6-1 Jurkat cell line and a CD3-TCR-negative Jurkat line, demonstrating that it is not coordinately expressed with the Ag receptor complex. The 43 kDa-protein is also found in the HPB-ALL human T cell line and PBL, but not in a murine T cell hybridoma or human neutrophils, both of which are unresponsive to PTx activation. These data suggest that the biochemical basis for the mitogenic activity of PTx may lie in its binding to a specific membrane receptor that is capable of transmitting an activation signal.  相似文献   

2.
We have used an interleukin-2 (IL-2) promoter-CAT fusion gene to study activation of IL-2 gene expression by IL-1, phytohemagglutinin (PHA), phorbol myristate acetate (PMA), and calcium ionophore in the murine thymoma line EL4 and the human lymphoma line Jurkat. The two cell lines respond differently to combinations of these stimuli. IL-1 in combination with suboptimal concentration of PMA induced chloramphenicol acetyltransferase (CAT) activity in EL4. In Jurkat cells, IL-1 failed to synergize with PMA or PHA. Cotransfection with the IL-2/CAT gene and a construct capable of expressing murine T-cell type IL-1 receptors converted Jurkat cells to IL-1 responsiveness. IL-1 in combination with PHA but not with PMA resulted in induction of CAT activity in these cells. Induction of IL-2/CAT activity by all stimuli in both cell lines was blocked by the presence of EGTA in the culture medium. EGTA did not inhibit IL-1/PMA activation of an SV40 early promoter-CAT fusion gene in either EL4 or Jurkat cells; therefore, calcium was not required for IL-1 or PMA signal transduction. Jurkat cells were shown to differ from EL4 in their requirement for calcium mobilization. Two different calcium-dependent pathways of gene activation were distinguished, both of which were blocked by the immunosuppressive drug cyclosporin A.  相似文献   

3.
Murine T cell lines and hybridomas derived from the epidermis that express the V gamma 1.1C gamma 4V delta 6C delta TCR and may, therefore, recognize an autoantigen, secrete cytokines spontaneously in culture. In addition, activation of these cells requires engagement of the vitronectin receptor (VNR) by extracellular matrix proteins. To further evaluate the role of the TCR, the VNR, and the putative autoantigen in the activation of this T cell subset, we cloned complete cDNA encoding the V gamma 1.1C gamma 4 and V delta 6C delta TCR and transfected the cDNA constructs into a TCR- murine hybridoma and into a TCR- variant of the human Jurkat line. The murine transfectant spontaneously produced IL-2 in culture and IL-2 production could be inhibited by anti-CD3, anticlonotypic mAb to the transfected TCR, and anti-VNR mAb, as well as by RGDS. These results demonstrate that transfection of the gamma delta TCR confers to recipient T cells the phenotype of constitutive activation, as well as dependence on engagement of the VNR as an accessory molecule. In contrast, the Jurkat gamma delta transfectant failed to produce cytokines spontaneously, although the transfected TCR was capable of signal transduction after stimulation by anti-TCR mAb. Surprisingly, neither the murine transfectant nor the human transfectant could be induced to respond to autoantigen bearing cells in coculture assays. One interpretation of these results is that coexpression on the surface of the same cell of the V gamma 1.1 V delta 6 TCR, the VNR, and a putative autoantigen are necessary for T cell activation in this system.  相似文献   

4.
Interleukin 1 (IL-1) plays a prominent role in immune and inflammatory reactions. Our understanding of the IL-1 family has recently expanded to include six novel members named IL-1F5 to IL-1F10. Recently, it was reported that IL-1F9 activated NF-kappaB through the orphan receptor IL-1 receptor (IL-1R)-related protein 2 (IL-1Rrp2) in Jurkat cells (Debets, R., Timans, J. C., Homey, B., Zurawski, S., Sana, T. R., Lo, S., Wagner, J., Edwards, G., Clifford, T., Menon, S., Bazan, J. F., and Kastelein, R. A. (2001) J. Immunol. 167, 1440-1446). In this study, we demonstrate that IL-1F6 and IL-1F8, in addition to IL-1F9, activate the pathway leading to NF-kappaB in an IL-1Rrp2-dependent manner in Jurkat cells as well as in multiple other human and mouse cell lines. Activation of the pathway leading to NF-kappaB by IL-1F6 and IL-1F8 follows a similar time course to activation by IL-1beta, suggesting that signaling by the novel family members occurs through a direct mechanism. In a mammary epithelial cell line, NCI/ADR-RES, which naturally expresses IL-1Rrp2, all three cytokines signal without further receptor transfection. IL-1Rrp2 antibodies block activation of the pathway leading to NF-kappaB by IL-1F6, IL-1F8, and IL-1F9 in both Jurkat and NCI/ADR-RES cells. In NCI/ADR-RES cells, the three IL-1 homologs activated the MAPKs, JNK and ERK1/2, and activated downstream targets as well, including an IL-8 promoter reporter and the secretion of IL-6. We also provide evidence that IL-1RAcP, in addition to IL-1Rrp2, is required for signaling by all three cytokines. Antibodies directed against IL-1RAcP and transfection of cytoplasmically deleted IL-1RAcP both blocked activation of the pathway leading to NF-kappaB by the three cytokines. We conclude that IL-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP.  相似文献   

5.
Recent reports have shown that T cell receptor (TCR)-dependent ATP release from T cells is involved in production of interleukin-2 (IL-2) through activation of P2 receptors. Stimulation of TCR induces ATP release from T cells through gap junction hemichannels and maxianion channels, at least in part. However, the mechanisms of ATP release from activated T cells are not fully understood. Here, we studied the mechanisms of ATP release during TCR-dependent T cell activation by investigating the effects of various inhibitors on TCR-dependent ATP release from murine T cells. We found that not only anion channel and gap junction hemichannel inhibitors, but also exocytosis inhibitors suppressed the ATP release. These results suggest that ATP release from murine T cells is regulated by various mechanisms, including exocytosis. An inhibitor of exocytosis, bafilomycin A, significantly blocked TCR signaling, such as Ca2+ elevation and IL-2 production. Furthermore, bafilomycin A, ectonucleotidase, and P2Y6 receptor antagonist significantly inhibited production of pro-inflammatory cytokines from external antigen-restimulated splenocytes, indicating that vesicular exocytosis-mediated purinergic signaling has a significant role in TCR-dependent cytokine production. We also detected vesicular ATP in murine T cells and human T lymphoma Jurkat cells, both of which also expressed mRNA of SLC17A9, a vesicular nucleotide transporter. Knockdown of SLC17A9 in Jurkat cells markedly reduced ATP release and cytosolic Ca2+ elevation after TCR stimulation, suggesting involvement of SLC17A9-dependent vesicular exocytosis in ATP release and T cell activation. In conclusion, vesicular exocytosis of ATP appears to play a role in T cell activation and immune responses.  相似文献   

6.
7.
A T cell receptor (TCR) recognizes and responds to an antigenic peptide in the context of major histocompatibility complex-encoded molecules. This provokes T cells to produce interleukin-2 (IL-2) through extracellular signal-regulated kinase (ERK) activation. We investigated the roles of B-Raf in TCR-mediated IL-2 production coupled with ERK activation in the Jurkat human T cell line. We found that TCR cross-linking could induce up-regulation of both B-Raf and Raf-1 activities, but Raf-1 activity was decreased rapidly. On the other hand, TCR-stimulated kinase activity of B-Raf was sustained. Expression of a dominant-negative mutant of B-Raf abrogated sustained but not transient TCR-mediated MEK/ERK activation. The inhibition of sustained ERK activation by either expression of a dominant-negative B-Raf or treatment with a MEK inhibitor resulted in a decrease of the TCR-stimulated nuclear factor of activated T cells (NFAT) activity and IL-2 production. Collectively, our data provide the first direct evidence that B-Raf is a positive regulator of TCR-mediated sustained ERK activation, which is required for NFAT activation and the full production of IL-2.  相似文献   

8.
9.
Antibodies directed against the human T cell receptor or the closely associated CD3 molecule stimulate polyclonal T cell proliferation via mechanisms that mimic a primary immune response. We have investigated the requirement for IL-1 production in anti-CD3 (OKT3)-mediated mitogenesis using a Hodgkin's disease cell line (L428) as the accessory cell. L428 cells did not produce detectable IL-1 following stimulation with lipopolysaccharide or phorbol ester (PMA), nor did they transcribe detectable levels of mRNA for IL-1 alpha or beta after such treatment. Despite their inability to produce IL-1, as few as 1 X 10(4) L428 cells reconstituted the proliferative response of accessory cell-depleted T cells to anti-CD3. Although larger numbers of non-rosette-forming (E-) cells were required for maximal responsiveness to anti-CD3, the maximal degree of proliferation was higher with E- cells than with L428 cells. L428-mediated T cell proliferation did not result from residual accessory cells in the responding population or an allogeneic effect since L428 cells were also capable of providing accessory cell activity for the anti-CD3-dependent generation of IL-2 by the Jurkat T cell line. Although the mechanism by which L428 cells provide accessory functions remains incompletely characterized, the ability of anti-HLA-DR F(ab')2 fragments to completely abrogate L428 and monocyte-mediated anti-CD3 mitogenesis, despite the addition of exogenous IL-1, provides evidence for the participation HLA-DR molecules in this response. These data indicate that anti-CD3-induced proliferation of unprimed human T lymphocytes can occur independently of IL-1 production by accessory cells and may involve the participation of HLA-DR molecules.  相似文献   

10.
Helicobacter pylori infection is associated with gastritis, ulcerations, and gastric adenocarcinoma. H. pylori secretes the vacuolating cytotoxin (VacA), a major pathogenicity factor. VacA has immunosuppressive effects, inhibiting interleukin-2 (IL-2) secretion by interference with the T cell receptor/IL-2 signaling pathway at the level of calcineurin, the Ca2+-calmodulin-dependent phosphatase. Here, we show that VacA efficiently enters activated, migrating primary human T lymphocytes by binding to the beta2 (CD18) integrin receptor subunit and exploiting the recycling of lymphocyte function-associated antigen (LFA)-1. LFA-1-deficient Jurkat T cells were resistant to vacuolation and IL-2 modulation, and genetic complementation restored sensitivity to VacA. VacA targeted human, but not murine, CD18 for cell entry, consistent with the species-specific adaptation of H. pylori. Furthermore, expression of human integrin receptors (LFA-1 or Mac-1) in murine T cells resulted in VacA-mediated cellular vacuolation. Thus, H. pylori co-opts CD18 as a VacA receptor on human T lymphocytes to subvert the host immune response.  相似文献   

11.
The mechanism underlying the apparent differences in the capacity of murine and human class I MHC molecules to function as signal transducing structures in T cells was examined. Cross-linking murine class I MHC molecules on splenic T cells did not stimulate an increase in intracellular calcium ([Ca2+]i) and failed to induce proliferation in the presence of IL-2 or PMA. In contrast, modest proliferation was induced by cross-linking class I MHC molecules on murine peripheral blood T cells or human class I MHC molecules on murine transgenic spleen cells, but only when costimulated with PMA. Moreover, cross-linking murine class I MHC molecules or the human HLA-B27 molecule on T cell lines generated from transgenic murine splenic T cells stimulated only modest proliferation in the presence of PMA, but not IL-2. On the other hand, cross-linking murine class I MHC molecules expressed by the human T cell leukemic line, Jurkat, transfected with genes for these molecules, generated a prompt increase in [Ca2+]i, and stimulated IL-2 production in the presence of PMA. The results demonstrate that both murine and human class I MHC molecules have the capacity to function as signal transducing structures, but that murine T cells are much less responsive to this signal.  相似文献   

12.
We recently reported that the myristoylated peptide N-myristoyl-Lys-Arg-Thr-Leu-Arg (N-m-KRTLR) is a novel protein kinase C inhibitor. In this study, we investigated the biological effects of N-m-KRTLR using as an in vitro model the induction of the IL-2 receptor and IL-2 secretion by Jurkat cells in response to stimulation with 12-O tetradecanoylphorbol-13-acetate (TPA) plus phytohemagglutinin (PHA) and TPA plus OKT3 mAb. N-m-KRTLR significantly suppressed induction of the IL-2 receptor on the surface of the Jurkat cells by TPA plus either PHA or OKT3 mAb. Furthermore, N-m-KRTLR inhibited the production and release of IL-2 from cultured Jurkat cells stimulated with TPA plus either PHA or OKT3 mAb. Similarly, this peptide significantly inhibited the IL-2 production in normal human peripheral blood mononuclear cells in response to stimulation by TPA and PHA. In contrast, this peptide did not affect expression of the CD3 complex on the surface of the Jurkat cells either alone or in the presence of TPA or PHA. Furthermore, N-m-KRTLR did not interfere with the spontaneous proliferation of the Jurkat cells, and its effects on IL-2 secretion and IL-2 receptor expression in the Jurkat cells were evident without loss of cell viability. These results suggest that the novel protein kinase C inhibitor N-m-KRTLR may selectively inhibit certain activation pathways of Jurkat cells and indicate the usefulness of N-m-KRTLR in the analysis of discrete events in T cell activation.  相似文献   

13.
Monoclonal antibody crosslinking of phosphatidylinositol-anchored Ly-6A.2 molecules on the surface of murine T lymphocytes leads to cell activation and secretion of IL-2. To examine the potential activity of these molecules in human T cells we transfected the Ly-6A.2 gene into Jurkat cells. Transfection of Jurkat cells with genomic Ly-6A.2 sequences results in low levels of Ly-6A.2 on the cell surface. However, linking the Ly-6A.2 sequences to the enhancer from the human CD2 gene results in greatly increased expression of Ly-6A.2. These molecules are anchored to the membrane via a phosphatidylinositol linkage. Crosslinking of Ly-6A.2 molecules with soluble mAb stimulates the transfected Jurkat cells to produce IL-2. This stimulation is abrogated by treatment with phosphatidylinositol-specific phospholipase C. The transfected human T cells displayed the same unusual crosslinking requirements for stimulation with anti-Ly-6A.2 mAbs as previously observed for murine T cells. Crosslinking of Ly-6A.2 with soluble antibodies is stimulatory, whereas immobilized antibodies are inactive. The crosslinking requirements for antiCD3 mAb stimulation display a reciprocal pattern. These data demonstrate that the Ly-6A.2 pathway for T cell activation is conserved between human and murine T cells.  相似文献   

14.
Release and intercellular transfer of cell surface CD81 via microparticles   总被引:4,自引:0,他引:4  
The human tetraspan molecule CD81 is a coreceptor in B and T cell activation and a candidate receptor for hepatitis C virus infection. We examined the surface expression of CD81 on B and T lymphocytes by quantitative flow cytometry. Upon cellular activation, CD81 surface levels were rapidly reduced. This reduction occurred as early as 1 h after activation and was linked to the release of CD81-positive microparticles into the cell culture medium. CD81 mRNA levels were not affected early after activation, but the release of CD81-positive microparticles was rapidly enhanced. In addition, intercellular transfer of CD81 was observed upon coculture of CD81-positive donor cells (Jurkat T cell line) with CD81-negative acceptor cells (U937 promonocytic cell line). This transfer was rapidly increased upon T cell activation, coinciding with enhanced CD81 release from activated Jurkat cells. We propose that the release and intercellular trafficking of CD81-positive microparticles regulate the expression of CD81 surface receptors in lymphocytes and play a role in the immune response during infections.  相似文献   

15.
Human lymphocytes have recently been described as an important physiological source of melatonin (N-acetyl-5-methoxytryptamine), which could be involved in the regulation of the human immune system. On the other hand, stimulation of IL-2 production by exogenous melatonin has been shown in the Jurkat human lymphocytic cell line. Furthermore, both melatonin membrane and nuclear receptors are present in these cells. In this study, we show that the necessary machinery to synthesize melatonin is present and active in resting and stimulated Jurkat cells. Accordingly, we have found that cells synthesize and release melatonin in both conditions. Therefore, we investigated whether endogenous melatonin produced by Jurkat cells was involved in the regulation of IL-2 production. When melatonin membrane and nuclear receptors were blocked using specific antagonists, luzindole and CGP 55644, respectively, we found that IL-2 production decreased, and this drop was reverted by exogenous melatonin. Additionally, PHA activation of Jurkat cells changed the profile of melatonin nuclear receptor mRNA expression. A previous study showed that exogenous melatonin is able to counteract the decrease in IL-2 production caused by prostaglandin E2 (PGE2) in human lymphocytes via its membrane receptor. In our model, when we blocked the melatonin membrane receptor with luzindole, the inhibitory effect of PGE2 on IL-2 production was higher. Therefore, we have demonstrated the physiological role of endogenous melatonin in this cell line. These findings indicate that endogenous melatonin synthesized by human T cells would contribute to regulation of its own IL-2 production, acting as an intracrine, autocrine, and/or paracrine substance.  相似文献   

16.
In many cells, protein kinase C (PKC) activation inhibits cellular phospholipase C thereby preventing receptor-mediated phosphatidylinositol (PI) metabolism. In T lymphocytes, the T cell antigen receptor (Ti)/CD3 complex regulates PI hydrolysis and we have examined the consequences of PKC activation on Ti/CD3-mediated PI metabolism in human peripheral blood-derived T lymphocytes (T lymphoblasts) and the leukemic T cell line Jurkat. In Jurkat cells, PI metabolism after Ti/CD3 stimulation, is inhibited by PKC activation. PKC activation also inhibits calcium-induced PI metabolism in permeabilized Jurkat cells. In marked contrast, PI metabolism after Ti/CD3 stimulation in T lymphoblasts, is not inhibited by PKC activation. Moreover, in permeabilized T lymphoblasts PI metabolism can be induced by calcium in synergy with guanine 5'-O-(3-thiotrisphosphate) via a PKC-insensitive mechanism. The different effect of PKC stimulation on PI metabolism in Jurkat cells and T lymphoblasts reveals heterogeneity of PLC regulation in T lymphocytes. The data also indicate that the role of PKC as a regulator of Ti/CD3 signal transduction can differ depending on cell type.  相似文献   

17.
18.

Background

Human T cells play an important role in pathogen clearance, but their aberrant activation is also linked to numerous diseases. T cells are activated by the concurrent induction of the T cell receptor (TCR) and one or more costimulatory receptors. The characterization of signaling pathways induced by TCR and/or costimulatory receptor activation is critical, since these pathways are excellent targets for novel therapies for human disease. Although studies using human T cell lines have provided substantial insight into these signaling pathways, no comprehensive, direct comparison of these cell lines to activated peripheral blood T cells (APBTs) has been performed to validate their usefulness as a model of primary T cells.

Methodology/Principal Findings

We used quantitative biochemical techniques to compare the activation of two widely used human T cell lines, Jurkat E6.1 and HuT78 T cells, to APBTs. We found that HuT78 cells were similar to APBTs in proximal TCR-mediated signaling events. In contrast, Jurkat E6.1 cells had significantly increased site-specific phosphorylation of Pyk2, PLCγ1, Vav1, and Erk1/Erk2 and substantially more Ca2+ flux compared to HuT78 cells and APBTs. In part, these effects appear to be due to an overexpression of Itk in Jurkat E6.1 cells compared to HuT78 cells and APBTs. Both cell lines differ from APBTs in the expression and function of costimulatory receptors and in the range of cytokines and chemokines released upon TCR and costimulatory receptor activation.

Conclusions/Significance

Both Jurkat E6.1 and HuT78 T cells had distinct similarities and differences compared to APBTs. Both cell lines have advantages and disadvantages, which must be taken into account when choosing them as a model T cell line.  相似文献   

19.
MUC1 is a mucinous glycoprotein which is normally expressed on the surface of a variety of epithelia and aberrantly overexpressed on some human tumors. In this report, we demonstrate that the epithelial mucin, MUC1, is expressed on resting human peripheral blood T cells and two leukemia T cell lines, Jurkat and Hut 78. Crosslinking of MUC1 on peripheral blood T cells by plate-bound anti-MUC1 (DF3-P) antibody inhibits cell proliferation, IL-2 and GM-CSF production, and up-regulation of the IL-2 receptor upon anti-CD3 stimulation. Induction of IL-2 production by Jurkat and HUT 78 is also suppressed and cannot be reversed by the addition of anti-CD28 mAb. These findings suggest that MUC1 can be a potent negative regulator for T cell activation at the resting stage.  相似文献   

20.
Toxic shock syndrome toxin-1 (TSST-1) is a 22-kDa exotoxin produced by most Staphylococcus aureus strains responsible for toxic shock syndrome. TSST-1 is a mitogen for human T cells. The mechanism of T cell activation by TSST-1 was investigated. TSST-1 induced IL-2R expression, IL-2 synthesis, and proliferation in T cells in a monocyte-dependent fashion. Neither IL-1 nor IL-2, alone or in combination, substituted for monocytes in supporting TSST-1-induced mitogenesis. We investigated the mechanism by which TSST-1 induces initogenesis. TSST-1 failed to induce ADP-ribosylation of T cell membrane proteins. However, the toxin induced transient translocation of protein kinase C from cytosol to plasma membranes and also induced the mobilization of cellular Ca2+ stores in both PBMC and the Jurkat human tumor T cell line, suggesting that TSST-1 triggered inositol phospholipid turnover. This was directly demonstrated to be the case in both cellular preparations studied. TSST-1 induced the increased synthesis of the inositol phospholipid phosphatidyl inositol, phosphatidyl inositol-4 phosphate, and phosphoinositol inositol-4,5-bisphosphate, and induced the breakdown of inositol phospholipid as evidence by the accumulation of phosphatidic acid and inositol phosphates. We conclude that the action of TSST-1 involves the induction of inositol phospholipid turnover, protein kinase C activation, and mobilization of cellular Ca2+ stores. This effect is similar to that of mitogenic lectins and of anti-CD3 antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号