首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi beta1,6-N-acetylglucosaminyltransferase V (Mgat5) produces beta1,6GlcNAc-branched N-glycans on glycoproteins, which increases their affinity for galectins and opposes loss from the cell surface to constitutive endocytosis. Oncogenic transformation increases Mgat5 expression, increases beta1,6GlcNAc-branched N-glycans on epidermal growth factor and transforming growth factor-beta receptors, and enhances sensitivities to ligands, cell motility, and tumor metastasis. Here, we demonstrate that Mgat5(-/-) mouse embryonic fibroblasts (MEFs) display reduced sensitivity to anabolic cytokines and reduced glucose uptake and proliferation. Mgat5(-/-) mice are also hypoglycemic, resistant to weight gain on a calorie-enriched diet, hypersensitive to fasting, and display increased oxidative respiration and reduced fecundity. Serum-dependent activation of the extracellular response kinase (growth) and Smad2/3 (arrest) pathways in Mgat5(-/-) MEFs and bone marrow cells reveals an imbalance favoring arrest. Mgat5(-/-) mice have fewer muscle satellite cells, less osteogenic activity in bone marrow, and accelerated loss of muscle and bone mass with aging. Our results suggest that beta1,6GlcNAc-branched N-glycans promote sensitivity to anabolic cytokines, and increase fat stores, tissue renewal, and longevity.  相似文献   

2.
Cheung P  Dennis JW 《Glycobiology》2007,17(7):767-773
Phosphatase and tensin homolog (Pten) phosphatase opposes intracellular phosphoinositide 3-kinase (PI3K)/Akt signaling and is a potent tumor suppressor, while Golgi beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is positively associated with cancer progression and metastasis. beta1,6GlcNAc-branched N-glycans on receptor glycoproteins promote their surface residency and sensitizes cells to growth factor signaling. Here we demonstrate that the Pten heterozygosity in mouse embryonic fibroblasts enhances cell adhesion-dependent PI3K/Akt signaling, cell spreading, and proliferation, while Pten/Mgat5 double mutant cells are normalized. However, planar asymmetry typical of fibroblasts and invasive carcinomas is not fully rescued, suggesting that Mgat5 and Pten function together to regulate the membrane dynamics of PI3K/Akt signaling typical of motile cells. Pten heterozygosity was associated with increased surface beta1,6GlcNAc-branched N-glycans, suggesting positive feedback from PI3K signaling to N-glycan branching. In vivo, Mgat5(-/-) Pten(+/-) and Mgat5(+/-)Pten(+/-)mutant mice showed a small but significant increase in longevity compared with Pten(+/-) mice. Taken together, our results reveal that Mgat5 and Pten interact in an opposing manner to regulate cellular sensitivities to extracelluar growth cues.  相似文献   

3.
Autoimmunity is a complex trait disease where the environment influences susceptibility to disease by unclear mechanisms. T cell receptor clustering and signaling at the immune synapse, T cell proliferation, CTLA-4 endocytosis, T(H)1 differentiation, and autoimmunity are negatively regulated by beta1,6GlcNAc-branched N-glycans attached to cell surface glycoproteins. Beta1,6GlcNAc-branched N-glycan expression in T cells is dependent on metabolite supply to UDP-GlcNAc biosynthesis (hexosamine pathway) and in turn to Golgi N-acetylglucosaminyltransferases Mgat1, -2, -4, and -5. In Jurkat T cells, beta1,6GlcNAc-branching in N-glycans is stimulated by metabolites supplying the hexosamine pathway including glucose, GlcNAc, acetoacetate, glutamine, ammonia, or uridine but not by control metabolites mannosamine, galactose, mannose, succinate, or pyruvate. Hexosamine supplementation in vitro and in vivo also increases beta1,6GlcNAc-branched N-glycans in na?ve mouse T cells and suppresses T cell receptor signaling, T cell proliferation, CTLA-4 endocytosis, T(H)1 differentiation, experimental autoimmune encephalomyelitis, and autoimmune diabetes in non-obese diabetic mice. Our results indicate that metabolite flux through the hexosamine and N-glycan pathways conditionally regulates autoimmunity by modulating multiple T cell functionalities downstream of beta1,6GlcNAc-branched N-glycans. This suggests metabolic therapy as a potential treatment for autoimmune disease.  相似文献   

4.
Suppression of tumor growth and metastasis in Mgat5-deficient mice   总被引:22,自引:0,他引:22  
Golgi beta1,6N-acetylglucosaminyltransferase V (MGAT5) is required in the biosynthesis of beta1,6GlcNAc-branched N-linked glycans attached to cell surface and secreted glycoproteins. Amounts of MGAT5 glycan products are commonly increased in malignancies, and correlate with disease progression. To study the functions of these N-glycans in development and disease, we generated mice deficient in Mgat5 by targeted gene mutation. These Mgat5-/- mice lacked Mgat5 products and appeared normal, but differed in their responses to certain extrinsic conditions. Mammary tumor growth and metastases induced by the polyomavirus middle T oncogene was considerably less in Mgat5-/- mice than in transgenic littermates expressing Mgat5. Furthermore, Mgat5 glycan products stimulated membrane ruffling and phosphatidylinositol 3 kinase-protein kinase B activation, fueling a positive feedback loop that amplified oncogene signaling and tumor growth in vivo. Our results indicate that inhibitors of MGAT5 might be useful in the treatment of malignancies by targeting their dependency on focal adhesion signaling for growth and metastasis.  相似文献   

5.
The differentiation of naive CD4(+) T cells into either proinflammatory Th1 or proallergic Th2 cells strongly influences autoimmunity, allergy, and tumor immune surveillance. We previously demonstrated that beta1,6GlcNAc-branched complex-type (N-acetylglucosaminyltransferase V (Mgat5)) N-glycans on TCR are bound to galectins, an interaction that reduces TCR signaling by opposing agonist-induced TCR clustering at the immune synapse. Mgat5(-/-) mice display late-onset spontaneous autoimmune disease and enhanced resistance to tumor progression and metastasis. In this study we examined the role of beta1,6GlcNAc N-glycan expression in Th1/Th2 cytokine production and differentiation. beta1,6GlcNAc N-glycan expression is enhanced by TCR stimulation independent of cell division and declines at the end of the stimulation cycle. Anti-CD3-activated splenocytes and naive T cells from Mgat5(-/-) mice produce more IFN-gamma and less IL-4 compared with wild-type cells, the latter resulting in the loss of IL-4-dependent down-regulation of IL-4Ralpha. Swainsonine, an inhibitor of Golgi alpha-mannosidase II, blocked beta1,6GlcNAc N-glycan expression and caused a similar increase in IFN-gamma production by T cells from humans and mice, but no additional enhancement in Mgat5(-/-) T cells. Mgat5 deficiency did not alter IFN-gamma/IL-4 production by polarized Th1 cells, but caused an approximately 10-fold increase in IFN-gamma production by polarized Th2 cells. These data indicate that negative regulation of TCR signaling by beta1,6GlcNAc N-glycans promotes development of Th2 over Th1 responses, enhances polarization of Th2 cells, and suggests a mechanism for the increased autoimmune disease susceptibility observed in Mgat5(-/-) mice.  相似文献   

6.
Targeted gene mutations in mice that cause deficiencies in protein glycosylation have revealed functions for specific glycans structures in embryogenesis, immune cell regulation, fertility and cancer progression. UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (GlcNAc-TV or Mgat5) produces N-glycan intermediates that are elongated with poly N-acetyllactosamine to create ligands for the galectin family of mammalian lectins. We generated Mgat5-deficient mice by gene targeting methods in embryonic stem cells, and observed a complex phenotype in adult mice including susceptibility to autoimmune disease, reduced cancer progression and a behavioral defect. We found that Mgat5-modified N-glycans on the T cell receptor (TCR) complex bind to galectin-3, sequestering TCR within a multivalent galectin-glycoprotein lattice that impedes antigen-dependent receptor clustering and signal transduction. Integrin receptor clustering and cell motility are also sensitive to changes in Mgat5-dependent N-glycosylation. These studies demonstrate that low affinity but high avidity interactions between N-glycans and galectins can regulate the distribution of cell surface receptors and their responsiveness to agonists.  相似文献   

7.
N-acetylglucosaminyltransferase V (Mgat5 or GnT-V) is an enzyme that catalyzes beta1-6 branching of N-acetylglucosamine on asparagine (N)-linked oligosaccharides (N-glycan) of cell proteins. The levels of Mgat5 glycan products commonly are increased in malignancies. Although Mgat5 is known to be important in tumor metastases, the effects of Mgat5 on host immune responses are not fully defined. In this study, a Mgat5 specific-short hairpin RNA (shRNA) vector was transfected into murine mammary adenocarcinoma MA782 cells to assess the effects of Mgat5 on tumor cell growth, T cells, and macrophages following inoculation of mice with shRNA-transfected cancer cells. The results showed that blocking expression of Mgat5-modified glycans in MA782 cells significantly suppressed tumor progression both in vivo and in vitro, strongly stimulated Th1 cytokine production, and enhanced opsonophagocytic capability of macrophages in vivo. Importantly, reduction of complex N-glycans on MA782 tumor cells by Mgat5-shRNA resulted in significantly increased proliferation and CD45 surface expression of CD4+ T cells. Our data suggest Mgat5-shRNA could serve as a useful tool to treat breast cancer as well as a powerful tool for the functional investigation of N-glycans and glycoprotein synthesis. Our data suggest that knockdown of Mgat5 inhibits breast cancer cells' growth with activation of CD4+ T cells and macrophages.  相似文献   

8.
Oncogenic signaling stimulates the dynamic remodeling of actin microfilaments and substrate adhesions, essential for cell spreading and motility. Transformation is associated with increased expression of beta1,6GlcNAc-branched N-glycans, products of Golgi beta1,6-acetylglucosaminyltransferase V (Mgat5) and the favored ligand for galectins. Herein we report that fibronectin fibrillogenesis and fibronectin-dependent cell spreading are deficient in Mgat5(-/-) mammary epithelial tumor cells and inhibited in Mgat5(+/+) cells by blocking Golgi N-glycan processing with swainsonine or by competitive inhibition of galectin binding. At an optimum dosage, exogenous galectin-3 added to Mgat5(+/+) cells activates focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K), recruits conformationally active alpha5beta1-integrin to fibrillar adhesions, and increases F-actin turnover. RGD peptide inhibits PI3K-dependent fibronectin matrix remodeling and fibronectin-dependent cell motility, while galectin-3 stimulates and overrides the inhibitory effects of RGD. Antibodies to the galectin-3 N-terminal oligomerization domain stimulate alpha5beta1 activation and recruitment to fibrillar adhesions in Mgat5(+/+) cells, an effect that is blocked by disrupting galectin-glycan binding. Our results demonstrate that fibronectin polymerization and tumor cell motility are regulated by galectin-3 binding to branched N-glycan ligands that stimulate focal adhesion remodeling, FAK and PI3K activation, local F-actin instability, and alpha5beta1 translocation to fibrillar adhesions.  相似文献   

9.
Macromolecular complexes exhibit reduced diffusion in biological membranes; however, the physiological consequences of this characteristic of plasma membrane domain organization remain elusive. We report that competition between the galectin lattice and oligomerized caveolin-1 microdomains for epidermal growth factor (EGF) receptor (EGFR) recruitment regulates EGFR signaling in tumor cells. In mammary tumor cells deficient for Golgi beta1,6N-acetylglucosaminyltransferase V (Mgat5), a reduction in EGFR binding to the galectin lattice allows an increased association with stable caveolin-1 cell surface microdomains that suppresses EGFR signaling. Depletion of caveolin-1 enhances EGFR diffusion, responsiveness to EGF, and relieves Mgat5 deficiency-imposed restrictions on tumor cell growth. In Mgat5(+/+) tumor cells, EGFR association with the galectin lattice reduces first-order EGFR diffusion rates and promotes receptor interaction with the actin cytoskeleton. Importantly, EGFR association with the lattice opposes sequestration by caveolin-1, overriding its negative regulation of EGFR diffusion and signaling. Therefore, caveolin-1 is a conditional tumor suppressor whose loss is advantageous when beta1,6GlcNAc-branched N-glycans are below a threshold for optimal galectin lattice formation.  相似文献   

10.
Multiple sclerosis (MS) is characterized by inflammatory demyelination of axons and neurodegeneration, the latter inadequately modeled in experimental autoimmune encephalomyelitis (EAE). Susceptibility of inbred mouse strains to EAE is in part determined by major histocompatibility complex haplotype; however, other molecular mechanisms remain elusive. Galectins bind GlcNAc-branched N-glycans attached to surface glycoproteins, forming a molecular lattice that restricts lateral movement and endocytosis of glycoproteins. GlcNAc branching negatively regulates T cell activity and autoimmunity, and when absent in neurons, induces apoptosis in vivo in young adult mice. We find that EAE susceptible mouse strains PL/J, SJL, and NOD have reduced GlcNAc branching. PL/J mice display the lowest levels, partial deficiencies in N-acetylglucosaminyltransferase I, II, and V (i.e. Mgat1, -2, and -5), T cell hyperactivity and spontaneous late onset inflammatory demyelination and neurodegeneration; phenotypes markedly enhanced by Mgat5(+/-) and Mgat5(-/-) backgrounds in a gene dose-dependent manner. Spontaneous disease is transferable and characterized by progressive paralysis, tremor, dystonia, neuronophagia, and axonal damage in both demyelinated lesions and normal white matter, phenocopying progressive MS. Our data identify hypomorphic Golgi processing as an inherited trait that determines susceptibility to EAE, provides a unique spontaneous model of MS, and suggests GlcNAc-branching deficiency may promote T cell-mediated demyelination and neurodegeneration in MS.  相似文献   

11.
Malignant transformation of fibroblast and epithelial cells is accompanied by increased beta 1-6 N-acetylglucosaminyltransferase V (GlcNAc-TV) activity, a Golgi N-linked oligosaccharide processing enzyme. Herein, we report that expression of GlcNAc-TV in Mv1Lu cells, an immortalized lung epithelial cell line results in loss of contact- inhibition of cell growth, an effect that was blocked by swainsonine, an inhibitor of Golgi processing enzyme alpha-mannosidase II. In serum- deprived and high density monolayer cultures, the GlcNAc-TV transfectants formed foci, maintained microfilaments characteristic of proliferating cells, and also experienced accelerated cell death by apoptosis. Injection of the GlcNAc-TV transfectants into nude mice produced a 50% incidence of benign tumors, and progressively growing tumors in 2:12 mice with a latency of 6 mo, while no growth was observed in mice injected with control cells. In short term adhesion assays, the GlcNAc-TV expressing cells were less adhesive on surfaces coated with fibronectin and collagen type IV, but no changes were observed in levels of cell surface alpha 5 beta 1 or alpha v beta 3 integrins. The larger apparent molecular weights of the LAMP-2 glycoprotein and integrin glycoproteins alpha 5, alpha v and beta 1 in the transfected cells indicates that their oligosaccharide chains are substrates for GlcNAc-TV. The results suggest that beta 1-6GlcNAc branching of N-linked oligosaccharides contributes directly to relaxed growth controls and reduce substratum adhesion in premalignant epithelial cells.  相似文献   

12.
UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans. Mice make hybrid and complex N-glycans but little or no paucimannose N-glycans. In contrast, Drosophila melanogaster and Caenorhabditis elegans make paucimannose N-glycans but little or no hybrid or complex N-glycans. To determine the functional requirement for beta1,2-N-acetylglucosaminyltransferase I in Drosophila, we generated null mutations by imprecise excision of a nearby transposable element. Extracts from Mgat1(1)/Mgat1(1) null mutants showed no beta1,2-N-acetylglucosaminyltransferase I enzyme activity. Moreover, mass spectrometric analysis of these extracts showed dramatic changes in N-glycans compatible with lack of beta1,2-N-acetylglucosaminyltransferase I activity. Interestingly, Mgat1(1)/Mgat1(1) null mutants are viable but exhibit pronounced defects in adult locomotory activity when compared with Mgat1(1)/CyO-GFP heterozygotes or wild type flies. In addition, in null mutants males are sterile and have a severely reduced mean and maximum life span. Microscopic examination of mutant adult fly brains showed the presence of fused beta lobes. The removal of both maternal and zygotic Mgat1 also gave rise to embryos that no longer express the horseradish peroxidase antigen within the central nervous system. Taken together, the data indicate that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans are required for locomotory activity, life span, and brain development in Drosophila.  相似文献   

13.
Malignant transformation is accompanied by altered cell surface glycosylation. N-Linked oligosaccharides carrying beta1-6GlcNAc branches are associated with tumor invasion and metastasis. Therefore, compounds that can enter cells and block biosynthesis of beta1-6GlcNAc-branched glycans without overt cytotoxicity are potential anticancer agents. We have developed a homogeneous cell-based assay for detection of such compounds. The method enables identification of agents that block beta1-6GlcNAc-branched glycan expression after incubation for 16-20 h with MDAY-D2 tumor cells, thereby protecting the cells from the subsequent addition of leukoagglutinin, a cytotoxic plant lectin. We observed that MDAY-D2 cell number is directly proportional to the level of endogenous alkaline phosphatase activity measured spectrophotometrically in cultures after the addition of substrate. The alkaline phosphatase assay was capable of detecting as few as 1,500 cells. The assay was readily adapted for high-throughput screening as reagent costs are low and no cell harvesting and washing steps are required. Under high-throughput operating conditions, the coefficient of variation for controls was found to be 4.2%. The results suggest that measurement of alkaline phosphatase in this cell assay format may be adapted for wider applications in high-throughput screenings for compounds that relieve cells from other growth inhibitors.  相似文献   

14.
Korczak B  Le T  Elowe S  Datti A  Dennis JW 《Glycobiology》2000,10(6):595-599
UDP-GlcNAc: Manalpha1-6Manbeta-R beta1-6 N-acetylglucosaminyltransferase V (EC 2.4.1.155, GlcNAc-TV) is a Golgi enzyme that substitutes the trimannosyl core in the biosynthetic pathway for complex-type N-linked glycans. GlcNAc-TV activity is regulated by oncogenes frequently activated in cancer cells ( ras, src, and her2/neu ) and by activators of T lymphocytes. Overexpression of GlcNAc-TV in epithelial cells results in morphological transformation, while tumor cell mutants selected for loss of GlcNAc-TV products show diminished malignant potential in mice. In this report, we have expressed and characterized a series of N- and C-terminal deletions of GlcNAc-TV. Portions of GlcNAc-TV sequence were fused at the N-terminal domain to IgG-binding domains of staphylococcal Protein A and expressed in CHOP cells. The secreted fusion proteins were purified by IgG Sepharose affinity chromatography and assayed for enzyme activities. The peptide sequence S(213-740)of GlcNAc-TV was determined to be essential for the catalytic activity, the remaining amino acids comprising a 183 amino acid stem region, a 17 amino acid transmembrane domain and a 12 amino acid cytosolic moiety. Further deletion of 5 amino acids to produce peptide R(218-740)reduced enzyme activity by 20-fold. Similar K(m)and V(max)values for donor and acceptor were observed for peptide S(213-740), the minimal catalytic domain, and peptide Q(39-740), which also included the stem region. Truncation of five amino acids from the C-terminus also resulted in a 20-fold loss of catalytic activity. Secondary structure predictions suggest a high frequency of turns in the stem region, and more contiguous stretches of alpha-helix found in the catalytic domain.  相似文献   

15.
Allergic airway inflammation, including asthma, is usually characterized by the predominant recruitment of eosinophils. However, neutrophilia is also prominent during severe exacerbations. Cell surface-expressed glycans play a role in leukocyte trafficking and recruitment during inflammation. Here, the involvement of UDP-N-acetylglucosamine:α-6-D-mannoside β1,6-N-acetylglucosaminyltransferase V (MGAT5)-modified N-glycans in eosinophil and neutrophil recruitment during allergic airway inflammation was investigated. Allergen-challenged Mgat5-deficient (Mgat5(-/-)) mice exhibited significantly attenuated airway eosinophilia and inflammation (decreased Th2 cytokines, mucus production) compared with WT counterparts, attributable to decreased rolling, adhesion, and survival of Mgat5(-/-) eosinophils. Interestingly, allergen-challenged Mgat5(-/-) mice developed airway neutrophilia and increased airway reactivity with persistent elevated levels of proinflammatory cytokines (IL-17A, TNFα, IFNγ)). This increased neutrophil recruitment was also observed in LPS- and thioglycollate (TG)-induced inflammation in Mgat5(-/-) mice. Furthermore, there was significantly increased recruitment of infused Mgat5(-/-) neutrophils compared with WT neutrophils in the peritoneal cavity of TG-exposed WT mice. Mgat5(-/-) neutrophils demonstrated enhanced adhesion to P-selectin as well as increased migration toward keratinocyte-derived chemokine compared with WT neutrophils in vitro along with increased calcium mobilization upon activation and expression of elevated levels of CXCR2, which may contribute to the increased neutrophil recruitment. These data indicate an important role for MGAT5-modified N-glycans in differential regulation of eosinophil and neutrophil recruitment during allergic airway inflammation.  相似文献   

16.
Aberrant glycosylation may promote tumor invasion and metastasis. To investigate whether microRNA (miRNA) is involved in glycosylation-related metastasis, we examined the role of let-7c, a well-known tumor-suppressor miRNA, in glycosylation in murine hepatocarcinoma cell lines Hca-F and Hca-P. We found that let-7c level was higher in Hca-P cells (with lower lymphatic metastasis potential) than in Hca-F cells (with higher lymphatic metastasis potential). Overexpression of let-7c decreased hyper-N-glycosylation of Hca-F cells and repressed their metastatic and invasive ability. Mannoside acetylglucosaminyltransferase 4, isoenzyme A (Mgat4a) is a key glycosyltransferase in the pathway of synthesizing complex N-glycans. Bioinformatics analysis indicates that Mgat4a may be a target of let-7c, which has been verified by dual-luciferase reporter gene assay. Furthermore, the anti-metastatic effect of overexpressed let-7c is similar to that of Mgat4a siRNAs transfection. Hence, our results suggest that let-7c may inhibit the metastatic ability of Hca-F cells, at least partially, via repressing Mgat4a activity.  相似文献   

17.
Lau KS  Dennis JW 《Glycobiology》2008,18(10):750-760
N-Glycan branching in the medial-Golgi generates ligands for lattice-forming lectins (e.g., galectins) that regulate surface levels of glycoproteins including epidermal growth factor (EGF) and transforming growth factor-beta (TGF-beta) receptors. Moreover, functional classes of glycoproteins differ in N-glycan multiplicities (number of N-glycans/peptide), a genetically encoded feature of glycoproteins that interacts with metabolic flux (UDP-GlcNAc) and N-glycan branching to differentially regulate surface levels. Oncogenesis increases beta1,6-N-acetylglucosaminyltransferase V (encoded by Mgat5) expression, and its high-affinity galectin ligands promote surface retention of growth receptors with a reduced dependence on UDP-GlcNAc. Mgat5(-/-) tumor cells are less metastatic in vivo and less responsive to cytokines in vitro, but undergo secondary changes that support tumor cell proliferation. These include loss of Caveolin-1, a negative regulator of EGF signaling, and increased reactive oxygen species, an inhibitor of phosphotyrosine phosphatases. These studies suggest a systems approach to cancer treatment where the surface distribution of receptors is targeted through metabolism and N-glycan branching to induce growth arrest.  相似文献   

18.
N-Acetylglucosaminyltransferase III (GlcNAc-TIII), the product of the Mgat3 gene, transfers the bisecting GlcNAc to the core mannose of complex N-glycans. The addition of this residue is regulated during development and has functional consequences for receptor signaling, cell adhesion, and tumor progression. Mice homozygous for a null mutation at the Mgat3 locus (Mgat3(Delta)) or for a targeted mutation in the Mgat3 gene (previously called Mgat3(neo), but herein renamed Mgat3(T37) because the allele generates inactive GlcNAc-TIII of approximately 37 kDa) were found to exhibit retarded progression of liver tumors. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of neutral N-glycans from kidneys revealed no significant differences, and both mutants showed the expected lack of N-glycan species with an additional GlcNAc. However, the two mutants differed in several biological traits. Mgat3(T37/T37) homozygotes in a mixed or 129(SvJ) background were retarded in growth rate and exhibited an altered leg clasp reflex, an altered gait, and defective nursing behavior. Pups abandoned by Mgat3(T37/T37) mothers were rescued by wild-type foster mothers. None of these Mgat3(T37/T37) traits were exhibited by Mgat3(Delta/Delta) mice or by heterozygous mice carrying the Mgat3(T37) mutation. Similarly, no dominant-negative effect was observed in Chinese hamster ovary cells expressing truncated GlcNAc-TIII in the presence of wild-type GlcNAc-TIII. However, compound heterozygotes carrying both the Mgat3(T37) and Mgat3(Delta) mutations exhibited a marked leg clasp reflex, indicating that in the absence of wild-type GlcNAc-TIII, truncated GlcNAc-TIII causes this phenotype. The Mgat3 gene was expressed in brain at embryonic day 10.5 and thereafter and in neurons of adult cerebellum. The mutant Mgat3 gene was also highly expressed in Mgat3(T37/T37) brain. This may be the basis of the unexpected neurological phenotype induced by truncated, inactive GlcNAc-TIII in the mouse.  相似文献   

19.
N-acetylglucosaminyltransferase III (GlcNAc-TIII), a product of the human MGAT3 gene, was discovered as a glycosyltransferase activity in hen oviduct. GlcNAc-TIII transfers GlcNAc in beta4-linkage to the core Man of complex or hybrid N-glycans, and thereby alters not only the composition, but also the conformation of the N-glycan. The dramatic consequences of the addition of this bisecting GlcNAc residue are reflected in the altered binding of lectins that recognize Gal residues on N-glycans. Changes in GlcNAc-TIII expression correlate with hepatoma and leukemia in rodents and humans, and the bisecting GlcNAc on Asn 297 of human IgG antibodies enhances their effector functions. Overexpression of a cDNA encoding GlcNAc-TIII alters growth control and cell-cell interactions in cultured cells, and in transgenic mice. While mice lacking GlcNAc-TIII are viable and fertile, they exhibit retarded progression of diethylnitrosamine (DEN)-induced liver tumors. Further biological functions of GlcNAc-TIII are expected to be uncovered as mice with a null mutation in the Mgat3 gene are challenged.  相似文献   

20.
Both tyrosine-phosphorylated caveolin-1 (pY14Cav1) and GlcNAc-transferase V (Mgat5) are linked with focal adhesions (FAs); however, their function in this context is unknown. Here, we show that galectin-3 binding to Mgat5-modified N-glycans functions together with pY14Cav1 to stabilize focal adhesion kinase (FAK) within FAs, and thereby promotes FA disassembly and turnover. Expression of the Mgat5/galectin lattice alone induces FAs and cell spreading. However, FAK stabilization in FAs also requires expression of pY14Cav1. In cells lacking the Mgat5/galectin lattice, pY14Cav1 is not sufficient to promote FAK stabilization, FA disassembly, and turnover. In human MDA-435 cancer cells, Cav1 expression, but not mutant Y14FCav1, stabilizes FAK exchange and stimulates de novo FA formation in protrusive cellular regions. Thus, transmembrane crosstalk between the galectin lattice and pY14Cav1 promotes FA turnover by stabilizing FAK within FAs defining previously unknown, interdependent roles for galectin-3 and pY14Cav1 in tumor cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号