首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Process of architecture formation was comparatively analyzed usingViburnum dilatatum andV. wrightii (Caprifoliaceae). In both species, orthotropic primary axes emerge from the basal parts of mother plants near the ground level. The primary axes grow vigorously in the first and the subsequent few years of their development. Later on, they decrease their elongation rates gradually and many axillary buds stay in dormancy. A few of the axillary buds emerge after several years' dormancy and elongate vigorously forming orthotropic secondary axes. inViburnum dilatatum, nearly 50% of the primary axes develop the secondary axes. The secondary axes elongate as vigorous as the primary axes. Furthermore, more than 20% of the secondary axes form the tertiary axes, and only 10% of the tertiary axes form the quarternary axes. In contrast, inViburnum wrightii only less than 25% of the primary axes form the secondary axes, and there is no tertiary or quarternary axis. The secondary axes of this species elongate less vigorously than the primary axes. As the result of those differences in the axis formation,Viburnum wrightii forms a simpler architecture thanV. dilatatum.  相似文献   

3.
Trehalose 6‐phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2‐oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration‐dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot.  相似文献   

4.
The early and differential responses of the individual buds along a shoot have remained largely unknown due to the difficulties of analyzing early indicators that allow the monitoring of the effects of subtle changes in the environment on the growth activity of the individual bud. To overcome this problem, we transformed poplar [Populus tremula (L.) xP. alba (L.)] with two chimeric genes,Pcdc2a-gus andPcycl At-gus, the expression of which is closely linked to cell division inArabidopsis thaliana (L.) Heynh. We analyzed the expression levels of both chimeric genes in individual buds of the same tree, and under different conditions known to promote or retard growth in the buds. The expression levels of both chimeric genes were found to reflect closely the growth activity of the buds. After decapitation of the shoot, the expression ofPcdc2a-gus andPcycl At-gus revealed rapid and selective changes in the cell cycle, even when no morphological changes were observed. Furthermore, on the basis of the expression of the chimeric cell cycle genes, different degrees of growth activity and dormancy could be discriminated in the axillary buds. In addition, the expression ofPcycl At-gus was found to be closely associated with the day length, which is critical for dormancy induction in poplar.Abbreviations GUS -glucuronidase - MU methylumbelliferone  相似文献   

5.
Viticulture has historically depended upon clonal propagation of winegrape, tablegrape, and rootstock cultivars. Dependence on clonal propagation is perpetuated by consumer preference, legal regulations, a reproductive biology that is incompatible with sustaining genetic lines, and the fact that grapevine breeding is a slow process. Adventitious root formation is a key component to successful clonal propagation. In spite of this fact, grapevine has not been a centerpiece for adventitious root research. Dormant woody canes represent complex assemblages of tissues and organs. Factors that further contribute to such complexity include levels of endogenous plant growth regulators, the extent and duration of dormancy, carbohydrate storage, transport, the presence or absence of dormant buds or emergent shoots, and preconditioning treatments. For the above reasons, the mechanisms driving adventitious root formation by grapevine and other woody cuttings are poorly understood. We present results indicating that the dormant bud on cane cuttings from a non-recalcitrant to root Vitis vinifera cultivar, cv. Cabernet Sauvignon, slows or inhibits adventitious root emergence. In contrast to Cabernet Sauvignon, removal of the dormant bud from cane cuttings of a recalcitrant to root hybrid rootstock (V. berlandieri × V. riparia cv. 420A) and an intermediate to root hybrid rootstock (V. riparia × V. rupestris cv. 101-14) had no influence on adventitious root emergence. Reciprocal transplanting of nodes containing dormant buds among all three cultivars did not affect rooting behavior. Our results indicate that the commonly held belief that bud removal diminishes adventitious root emergence is not true.  相似文献   

6.
The control of bud dormancy in potato tubers   总被引:5,自引:0,他引:5  
Potato (Solanum tuberosum L.) tuber buds normally remain dormant through the growing season until several weeks after harvest. In the cultivar Majestic, this innate dormancy persisted for 9 to 12 weeks in storage at 10° C, but only 3 to 4 weeks when the tubers were stored at 2° C. At certain stages, supplying cytokinins to tubers with innately dormant buds induced sprout growth within 2 d. The growth rate was comparable to that of buds whose innate dormancy had been lost naturally. Cytokinin-treatment did not accelerate the rates of cell division and cell expansion in buds whose innate dormancy had already broken naturally. Gibberellic acid did not induce sprout growth in buds with innate dormancy. We conclude that cytokinins may well be the primary factor in the switch from innate dormancy to the non-dormant state in potato tuber buds, but probably do not control the subsequent sprout growth.Abbreviations tio 6ade 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)purine, zeatin - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)-9--D-ribofuranosyl purine, zeatin riboside  相似文献   

7.
Alginate beads containing axillary buds of in vitro-grown gentian (Gentiana scabra Bunge var. buergeri Maxim.), were successfully cryopreserved following 2 step-preculture with sucrose and desiccation. The optimal preculture conditions were as follows: axillary buds were excised from in vitro-grown gentian plants and precultured on semi-solid Murashige and Skoog (MS) medium containing 0.1 M sucrose for 10 days (25 °C, 16-h photoperiod) (first step). This was followed by incubation on semi-solid MS media containing 0.4 M (1 day) and then 0.7 M sucrose (1 day) (second step). After preculture, the buds were encapsulated in alginate beads and desiccated aseptically on silica gel for 9 h to a water content of 10% (fresh weight basis), followed by immersion in liquid nitrogen (LN). With this protocol, 87% of the gentian buds survived exposure to LN and showed normal development of shoots and roots in vitro and in vivo. Depletion of NH4NO3 in the regeneration medium did not improve survival following desiccation and exposure to LN. The results show that 2 step-preculture with sucrose is effectively applicable in encapsulation–desiccation based cryopreservation of gentian axillary buds. This preculture can replace the conventionally used lengthy cold-hardening treatment and is useful for routine cryopreservation of gentian germplasm.  相似文献   

8.
9.
Auxin–cytokinin interactions in the control of shoot branching   总被引:1,自引:0,他引:1  
In many plant species, the intact main shoot apex grows predominantly and axillary bud outgrowth is inhibited. This phenomenon is called apical dominance, and has been analyzed for over 70 years. Decapitation of the shoot apex releases the axillary buds from their dormancy and they begin to grow out. Auxin derived from an intact shoot apex suppresses axillary bud outgrowth, whereas cytokinin induced by decapitation of the shoot apex stimulates axillary bud outgrowth. Here we describe the molecular mechanisms of the interactions between auxin and cytokinin in the control of shoot branching.  相似文献   

10.
The complete protocols for long-term micropropagation of some cultivars of four lupin species: Lupinus luteus, L. albus, L. angustifolius and L. mutabilis were elaborated. The shoots were regenerated in vitro via induction of axillary buds development. Plantlets were multiplicated on lowered salts MS-derived media containing BAP in diverse and generally low concentrations. Significant differences in regeneration capacity between species and cultivars were observed. The highest multiplication ratio revealed L. mutabilis and L. luteus. Regenerated shoots were rooted in vitro on low-salts MS-derived media with B5 vitamins. Media were supplemented with different auxins that affected roots formation of particular species and cultivars. Rooting ability of regenerated shoots decreased rapidly through in vitro culture. For that reason, grafting was applied as an alternative method of transfer of shoots to in vivo conditions. This method turned out to be successful for the majority of studied species and cultivars. Complete rooted or grafted plantlets were cultivated in pots with perlit in greenhouse. An erratum to this article is available at .  相似文献   

11.
Axillary buds of intact pea seedlings (Pisum sativum L. cv Alaska) do not grow and are said to be dormant. Decapitation of the terminal bud promotes the growth of these axillary buds, which then develop in the same manner as terminal buds. We previously showed that unique sets of proteins are expressed in dormant and growing buds. Here we describe the cloning, sequencing, and expression of a cDNA clone (pGB8) that is homologous to ribosomal protein L27 from rat. RNA corresponding to this clone increases 13-fold 3 h after decapitation, reaches a maximum enhancement of about 35-fold after 12 h, and persists at slightly reduced levels at later times. Terminal buds, root apices, and elongating internodes also contain pGB8 mRNA but fully expanded leaflets and fully elongated internodes do not. In situ hybridization analysis demonstrates that pGB8 mRNA increases in all parts of the bud within 1 h of decapitation. Under appropriate conditions, growing buds can be made to stop growing and become dormant; these buds subsequently can grow again. Therefore, buds have the capacity to undergo multiple cycles of growth and dormancy. RNA gel blots show that pGB8 expression is reduced to dormancy levels as soon as buds stop growing. However, in situ hybridization experiments show that pGB8 expression continues at growing-bud levels in the apical meristem for 2 d after it is reduced in the rest of the bud. When cultured stems containing buds are treated with indoleacetic acid at concentrations ≥10 μm, bud growth and expression of pGB8 in the buds are inhibited.  相似文献   

12.
Summary Micropropagation of the anti-cancer plant Camptotheca acuminata Decaisne from axillary buds and seed embryos was investigated. Axillary buds from greenhouse seedlings required a period of culture in media free of N6-benzyladenine (BA) before multiple shoot induction began. Direct induction of multiple shoots on BA-containing medium resulted in high mortality of the axillary buds. Multiple shoot induction from the greenhouse axillary buds was best achieved on B5 with 4.4 μM BA+0.5μM α-naphthaleneacetic acid, forming an average of three 2-mm tall shoots per bud in 8 wk. Elongation of these multiple shoots was successful at a lower BA level (0.22 μM) on B5 medium. Both in vitro and ex vitro rooting of the microcuttings was feasible with indole-3-butyric acid in the culture media, but ex vitro rooting led to high plantlet survival. Seed embryos were not ideal explants for multiple shoot induction. Shoot tips and axillary buds of in vitro-germinated seedlings showed an optimal multiple shoot formation on B5 with 8.9 μM BA, double the optimal BA level for greenhouse axillary buds. Using axillary buds to propagate C. acuminata plants in vitro is feasible for mass propagation of desired clonal lines high in camptothecin concentrations.  相似文献   

13.
In intact plants, cells in axillary buds are arrested at the G1 phase of the cell cycle during dormancy. In mammalian cells, the cell cycle is suppressed at the G1 phase by the activities of retinoblastoma tumor suppressor gene (RB) family proteins, depending on their phosphorylation state. Here, we report the isolation of a pea cDNA clone encoding an RB-related protein (PsRBR1, Accession No. AB012024) with a high degree of amino acid conservation in comparison with RB family proteins. PsRBR1 protein was detected as two polypeptides using an anti-PsRBR1 antibody in dormant axillary buds, whereas it was detected as three polypeptides, which were the same two polypeptides and another larger polypeptide 2 h after terminal decapitation. Both in vitro-synthesized PsPRB1 protein and lambda protein phosphatase-treated PsRBR1 protein corresponded to the smallest polypeptide detected by anti-PsRBR1 antibody, suggesting that the three polypeptides correspond to non-phosphorylated form of PsRBR1 protein, and lower- and higher-molecular mass forms of phosphorylated PsRBR1 protein. Furthermore, in vivo labeling with [32P]-inorganic phosphate indicated that PsRBR1 protein was more phosphorylated before mRNA accumulation of cell cycle regulatory genes such as PCNA. Together these findings suggest that dormancy-to-growth transition in pea axillary buds is regulated by molecular mechanisms of cell cycle control similar to those in mammals, and that the PsRBR1 protein has an important role in suppressing the cell cycle during dormancy in axillary buds.  相似文献   

14.
A technique is described for the production de novo of cucumber (Cucumis sativus L.) shoots in the presence of cytokinin using cotyledon explants. The shoots, which arose from adventitious buds and not from enhanced axillary branching, are confined to a specific region at the base of the cotyledon. Concentrations (4 mgl–1 or less) of the cytokinins 6-benzylaminopurine, kinetin and N6-(2-isopentenyl)adenine, are all effective in producing adventitious buds. It is possible to achieve a yield of 23 shoots per cotyledon by removal of the axillary bud. The yield is increased to 50 shoots per cotyledon by cutting the basal region of the cotyledon into small pieces prior to culturing. These techniques may be useful for transformation studies in cucumber.  相似文献   

15.
Vegetative axillary bud dormancy and outgrowth is regulated by several hormonal and environmental signals. In perennials, the dormancy induced by hormonal and environmental signals has been categorized as eco-, endo- or para-dormancy. Over the past several decades para-dormancy has primarily been investigated in eudicot annuals. Recently, we initiated a study using the monoculm phyB mutant (phyB-1) and the freely branching near isogenic wild type (WT) sorghum (Sorghum bicolor) to identify molecular mechanisms and signaling pathways regulating dormancy and outgrowth of axillary buds in the grasses. In a paper published in the January 2010 issue of Plant Cell and Environment, we reported the role of branching genes in the inhibition of bud outgrowth by phyB, shade and defoliation signals. Here we present a model that depicts the molecular mechanisms and pathways regulating axillary bud dormancy induced by shade and defoliation signals in the grasses.Key words: axillary bud, dormancy, shade, phytochrome, defoliation, shoot branching, teosinte branched1, MAX2, cell cycle, sorghumThe dormancy and outgrowth of axillary buds is regulated by several plant hormones such as auxin, cytokinins, abscisic acid and strigolactones, and by environmental factors such as light quality, quantity and duration as well as water, temperature and nutrient status.13 Since the fate of an axillary bud is regulated by such diverse hormonal and environmental signals and their interactions, the type of dormancy induced varies. In perennials, three types of bud dormancy have been identified.4,5 Dormancy mediated by factors within the bud is known as endo-dormancy; while dormancy induced by factors within the plant but outside the bud is called paradormancy or correlative inhibition; the best known example being apical dominance. Dormancy induced due to unfavorable environmental conditions is known as eco-dormancy. Although there is an indepth knowledge about para-dormancy in annuals,6 few studies have been conducted on eco-dormancy. Similarly, studies of endo-dormancy have largely been restricted to low-temperature mediated growth-cessation of axillary buds of perennial plants.7,8 To understand the regulation of dormancy and outgrowth of axillary buds in monocots, we initiated a study on the molecular mechanisms inhibiting bud outgrowth by shade and defoliation signals in sorghum. Our results published in the January 2010 issue of Plant, Cell & Environment indicate that different types of dormancy may be induced in axillary buds of annual grasses by various signals and there may be overlapping and independent molecular mechanisms mediating induction of axillary bud dormancy.  相似文献   

16.
17.
Two novel transcripts expressed in pea dormant axillary buds   总被引:3,自引:0,他引:3  
To elucidate the molecular mechanism of apical dominance, the expression patterns of genes that are preferentially expressed in dormant axillary buds of pea (Pisum sativum L. cv. Alaska) seedlings were investigated. We isolated two cDNA clones, cPsAD1 and cPsAD2 whose corresponding genes were named PsAD1 and PsAD2, from a cDNA library of dormant axillary buds using the differential display method. The deduced amino acid sequence of PsAD1 contains 87 residues and is rich in glycine residues in the amino terminal region. A search of the protein databases failed to find any sequences similar to PsAD1 protein except for the glycine-rich region. Northern blot analyses showed that PsAD1 mRNA mainly accumulated in dormant axillary buds and that its amount rapidly decreased after decapitation of the terminal bud. In situ hybridization analyses indicated that PsAD1 mRNA was localized in the apical meristem, procambia, and leaf primordia in dormant axillary buds that were competent to grow out but whose growth was temporarily suspended. That is, the expression of the PsAD1 gene is closely associated with the dormancy of axillary buds. The deduced amino acid sequence of PsAD2 contains 98 amino acid residues and is not similar to those of previously characterized proteins. PsAD2 mRNA accumulated in dormant axillary buds, roots, mature leaflets and elongated stems, suggesting that PsAD2 is involved in not only the dormancy of axillary buds but also the non-growing state in various tissues.  相似文献   

18.
The in vitro phenylalanine incorporation by polyribosomes of peach flower buds (Prunus persica Stokes) during dormancy, dormancy break and flowering was investigated. Protein synthesis was measured using as catalyst either calf liver soluble factors or the ribosomal supernatant from the peach flower buds in the presence or the absence of the synthetic mRNA, polyuridylic acid. In the presence of polyuridylic acid, the activity of protein synthesis of dormant ribosomes is the same as that of ribosomes during dormancy break and flowering. The absence of synthetic messenger did not cause a change in activity. The ribosomal supernatant of dormant buds, but not of flowering buds, reduces the phenylalanine incorporation by polyribosomes from buds harvested at dormancy break.  相似文献   

19.
The occurrence, longevity, and contribution of axillary bud banks to population maintenance were investigated in a late-seral perennial grass, Bouteloua curtipendula, and a mid-seral perennial grass, Hilaria belangeri, in a semiarid oak-juniper savanna. Axillary buds of both species were evaluated over a 2-year period in communities with contrasting histories of grazing by domestic herbivores. A double staining procedure utilizing triphenyl tetrazolium chloride and Evan's blue indicated that both viable and dormant axillary buds remained attached to the base of reproductive parental tillers for 18–24 months which exceeded parental tiller longevity by approximately 12 months. Bud longevity of the late-seral species, B. curtipendula, exceeded bud longevity of the mid-seral species, H. belangeri, by approximately 6 months. Younger buds located on the distal portion of the tiller base were 3.2 and 1.4 times more likely to grow out than older proximal buds of B. curtipendula and H. belangeri, respectively. The percentage of older proximal buds, which included comparable portions of viable and dormant buds, that grew out to produce tillers following mortality of parental tillers was 6.0% for B. curtipendula and 8.4% for H. belangeri. In spite of the occurrence of relative large axillary bud banks for both species, the magnitude of proximal bud growth did not appear sufficient to maintain viable tiller populations. We found no evidence to support the hypothesis of compensatory bud growth on an individual tiller basis for either species. Grazing history of the communities from which the buds were collected did not substantially affect the number, status, longevity, or outgrowth of axillary buds on an individual tiller basis for either species. However, long-term grazing by domestic herbivores influenced axillary bud availability by modifying population structure of these two species. Bud number per square meter for B. curtipendula was 25% lower in the long-term grazed compared to the long-term ungrazed community based on a reduction in both tiller number per plant and plant number per square meter. In contrast, bud number per square meter for H. belangeri was 190% greater in the long-term grazed than in the long-term ungrazed community based on a large increase in plant density per square meter. Minimal contributions of axillary bud banks to annual maintenance of tiller populations in this mid- and late-seral species underscores the ecological importance of consistent tiller recruitment from recently developed axillary buds. Consistent tiller recruitment in grasslands and savannas characterized by intensive grazing and periodic drought implies that (1) bud differentiation and maturation must be remarkably tolerant of adverse environmental conditions and/or (2) tiller recruitment may resume from buds that mature following the cessation of severe drought and/or grazing, rather than from mature buds that survive these disturbances. These scenarios warrant additional research emphasis given the critical importance of this demographic process to tiller replacement in species populations and the maintenance of relative species abundance in grasslands and savannas. Received: 12 August 1996 / Accepted: 30 December 1996  相似文献   

20.
R. S. Barros  S. J. Neill 《Planta》1986,168(4):530-535
Aseptically cultured lateral buds of Salix viminalis L. collected from field-grown trees exhibited a clear periodicity in their ability to respond to exogenous abscisic acid (ABA). Buds were kept unopened by ABA only when the plants were dormant or entering dormancy. Short days alone did not induce bud dormancy in potted plants but ABA treatment following exposure to an 8-h photoperiod prevented bud opening although ABA treatment of buds from long-day plants did not. Naturally dormant buds taken from shoots of field-grown trees and cultured in the presence of ABA opened following a chilling treatment. In no cases were the induction and breaking of dormancy and response to ABA correlated with endogenous ABA levels in the buds.Abbreviations ABA abscisic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography - LD long day - MeABA methyl ABA - PAR photosynthetically active radiation - SD short day  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号